Assignment \#3

Due Wednesday, 15 February 2023, at the start of class

There will be no lectures on $8 \& 10$ February (Wednesday \& Friday). Instead, please carefully go through the following slides:
bueler.github.io/nade/assets/slides/iterative.pdf
This Assignment is based on these slides, and previous material. However, sections 4.1, 4.2, and 2.16 in the textbook complement this material.

P12. (a) Write a MATLAB/etc. function for Richardson iteration, with signature

```
function z = richardson(A,b,x0,N,omega)
```

It should return the N th iterate \mathbf{x}_{N} as z . Confirm that it works by showing you get the same x_{3} as on page 4 of the slides.
(b) How many iterations are needed to get 8 digit accuracy for LS1 with $\mathbf{x}_{0}=0$ and using the preferred value of ω ? (Clearly state how you interpret " 8 digit accuracy".) How many iterations for $\omega=0.1$ and $\omega=0.5$?

P13. (a) Write Matlab functions which do N iterations of the Jacobi and GaussSeidel (GS) methods:

$$
\begin{gathered}
\text { function } z=j \operatorname{jacobi}(A, b, x 0, N) \\
\text { function } z=\operatorname{gs}(A, b, x 0, N)
\end{gathered}
$$

For each one use the entries of A directly. That is, for jacobi (), implement formula (5) from the slides, and for gs () implement formula (7). (Do not split $A=D-L-U$ and store those parts; this is a waste of memory and misses the point.) Your implementation of GS should use less memory than Jacobi; make sure this is clear.
(b) For each method, how many iterations are needed to get 8 digit accuracy for LS1 using $\mathbf{x}_{0}=0$? (Clearly state how you interpret " 8 digit accuracy".)
(c) Demonstrate that GS fails on LS2. Now compute an explanatory spectral radius.

P14. Show that Jacobi iteration converges if A is strictly diagonally-dominant. (Hints: Jacobi iteration converges if and only if $\rho(M)<1$ for $M=-D^{-1}(L+U)$. So suppose $M \mathbf{v}=\lambda \mathbf{v}$ for $\mathbf{v} \neq 0$. Choose the largest-magnitude entry v_{i} of \mathbf{v}, so that $\left|v_{i}\right| \geq\left|v_{j}\right|$ for all j. Show then that $M \mathbf{v}=\lambda \mathbf{v}$, and the assumption of strict diagonal dominance, shows $\left|\lambda v_{i}\right|<\left|v_{i}\right|$ which shows $|\lambda|<1$.)

P15. (a) Consider this boundary value problem from P10 on Assignment \#2:

$$
u^{\prime \prime}(x)+q u(x)=f(x), \quad u\left(x_{L}\right)=\alpha, \quad u\left(x_{R}\right)=\beta
$$

Implement the centered finite difference method for this problem. Your code should have the signature

```
function [x,u] = bvpq(m,xL,xR,q,f,alpha,beta)
```

where input f is the function $f(x)$, but the other inputs are integers or real numbers. The outputs are the grid vector x and the (approximate) solution vector u. In this initial implementation, your code should use MATLAB's backslash command, or similar built-in solver, to solve the linear system. (Include the codes from parts (a) and (d) in what you turn in.)
(b) Check correctness of bvpq by solving the problem

$$
u^{\prime \prime}(x)-u(x)=f(x), \quad u(0)=1, \quad u(2)=0
$$

exactly, using the solution $u_{\mathrm{ex}}(x)=1-\sin (\pi x / 4)$. That is, start by finding the $f(x)$ for which this $u_{\mathrm{ex}}(x)$ is the exact solution. (This is using the method of manufactured solutions.) Show a figure which confirms that you have a verified code.
(c) Your part (a) code sets up and solves a linear system $A U=F$. For what q values is A strictly diagonally-dominant (SDD)?
(d) Duplicate the code from part (a), give it a new name bvpqgs, and implement Gauss-Seidel (GS) to solve the linear system, instead of calling the built-in linear solver. Let $x_{L}, x_{R}, f(x), \alpha, \beta$ all be as in part (b). For each of $m=5$ and $m=50$ find nonzero values q where Gauss-Seidel does converge and does not converge. (That is, find 4 values of q with these properties.) When convergence happens, how many iterations give 8 digit accuracy?

P16. In calculus you probably learned Newton's method as a memorized formula: $x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)$. Rewrite equations Newton's method equations (8), (9) from the slides, in the one-dimensional case ($n=1$), to derive this memorized formula.

P17. (a) Consider these 3 equations, chosen for visualizability:

$$
x^{2}+y^{2}+z^{2}=4, \quad x=\cos (\pi y), \quad z=y^{2}
$$

Sketch each equation individually as a surface in \mathbb{R}^{3}. (Do this by hand or by computer, the goal being a clear mental image of intersecting surfaces. Accuracy is not important.) Describe informally why there are two solutions of this system of three equations, that is, two points $(x, y, z) \in \mathbb{R}^{3}$ at which all three equations are satisfied. Explain why both solutions are inside the box $-1 \leq x \leq 1,-2 \leq y \leq 2,0 \leq z \leq 2$.
(b) The slides describe Newton's method for nonlinear systems. Implement it in MATLAB/etc. to solve the above nonlinear system. Show your script and generate at least five iterations. Use $\mathbf{x}_{0}=(-1,1,1)$ as an initial iterate to find one solution, and also find the other solution using a different initial iterate. Note that format long is appropriate here.

