Worksheet: Using the row-reduced echelon form
For each linear system $A \mathbf{x}=\mathbf{b}$ below I applied Matlab's ref () command to the augmented matrix $[A \mathbf{b}]$ to get the row-reduced echelon form $[R \mathbf{d}]$. Interpret it to answer the following questions:

- what is the rank of A ?
- find special solutions which span the nullspace $N(A)$
- identify vectors which span the column space $C(A)$
- write down the general solution to the system $A \mathbf{x}=\mathbf{b}$

1.

$$
\begin{aligned}
8 x_{1}+x_{2}+15 x_{3} & =-22 \\
3 x_{1}+5 x_{2}+x_{3} & =1 \\
4 x_{1}+9 x_{2}-x_{3} & =6
\end{aligned} \quad \Longrightarrow \quad[R \mathrm{~d}]=\left[\begin{array}{cccc}
1 & 0 & 2 & -3 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

- rank $=2$ (2 pious)

$$
\Leftrightarrow x_{1}+2 x_{3}=-3
$$

- $\vec{s}_{1}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$ so $N(A)=\operatorname{span}\left\{\vec{s}_{1}\right\}$

$$
x_{2}-x_{3}=2
$$

- pivot columns show $C(A)=\operatorname{span}\left\{\left[\begin{array}{l}8 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 5 \\ 9\end{array}\right]\right\}$
- $\vec{x}_{p}=\left[\begin{array}{c}-3 \\ 2 \\ 0\end{array}\right]$ so $\vec{x}=\vec{x}_{p}+t_{1} \vec{s}_{1}$ for any t_{1} (∞ solus)

2.

$$
\begin{aligned}
12 x_{1}-10 x_{2}+5 x_{3} & =-6 \\
-9 x_{1}-x_{2}-5 x_{3} & =-32 \\
x_{1}+3 x_{2}+12 x_{3} & =38
\end{aligned} \quad \Longrightarrow \quad[R \mathbf{d}]=\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

- $\operatorname{rank}=3$
- $N(A)=z=\{\overrightarrow{0}\}$

$$
\Leftrightarrow \begin{aligned}
x_{1} & =2 \\
x_{2} & =4 \\
x_{3} & =2
\end{aligned}
$$

- $C(A)=\operatorname{span}\left\{\left[\begin{array}{c}12 \\ -9 \\ 1\end{array}\right],\left[\begin{array}{c}-10 \\ -1 \\ 3\end{array}\right],\left[\begin{array}{c}5 \\ -5 \\ 12\end{array}\right]\right\}$
- $\vec{x}=\vec{d}=\left[\begin{array}{l}2 \\ 4 \\ 2\end{array}\right]$ (only one solution)

3.

$$
\begin{aligned}
2 x_{1}-x_{2}+5 x_{3}+2 x_{4} & =5 \\
2 x_{1}+x_{2}-x_{3}+6 x_{4} & =7
\end{aligned} \quad \Longrightarrow \quad[R \mathbf{d}]=\left[\begin{array}{ccccc}
1 & 0 & 1 & 2 & 3 \\
0 & 1 & -3 & 2 & 1
\end{array}\right]
$$

- $\operatorname{rank}=2$
- $\vec{S}_{1}=\left[\begin{array}{c}-1 \\ 3 \\ 1 \\ 0\end{array}\right] \vec{S}_{2}=\left[\begin{array}{c}-2 \\ -2 \\ 0 \\ 1\end{array}\right]$ and $N(A)=\operatorname{span}\left\{\vec{S}_{1}, \vec{S}_{2}\right\}$
- $C(A)=\operatorname{span}\left\{\left[\begin{array}{c}2 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}=\mathbb{R}^{2}$
- $\vec{x}_{p}=\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0\end{array}\right]$ so $\vec{x}=\vec{x}_{p}+t_{1} \vec{s}_{1}+t_{2} \vec{s}_{2}$ for any t_{1}, t_{2}
$(\infty$ solus)

$$
\begin{aligned}
2 x_{1}+2 x_{2} & =4 \\
-x_{1}+x_{2} & =4 \\
5 x_{1}-x_{2} & =-8 \\
2 x_{1}+6 x_{2} & =16
\end{aligned} \quad \Longrightarrow \quad[R \mathbf{d}]=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- $\operatorname{rank}=2$

$$
\Leftrightarrow x_{1}=-1
$$

- $N(A)=z=\{\overrightarrow{0}\}$

$$
x_{2}=3
$$

- $(A)=\operatorname{span}\left\{\left[\begin{array}{c}2 \\ -1 \\ 5 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ -1 \\ 6\end{array}\right]\right\}$
- $\vec{x}=\vec{x}_{p}=\left[\begin{array}{c}-1 \\ 3\end{array}\right]$ (one solution)

5. In problem 4 there are four equations in two unknowns. In typical cases there would be no solutions at all. Show a representative $[R \mathbf{d}]$ when there are no solutions.
inconsistent equations in genera
