Worksheet: elimination, via row operations and matrices
Do these calculations with a group, if possible.
A. Consider this system of three equations in three unknowns:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =4 \\
-8 x_{1}+4 x_{2} & =-8 \\
5 x_{1}+7 x_{2}-4 x_{3} & =-7
\end{aligned}
$$

Do elimination, as described in lecture and in section 2.2, followed by back-substitution, to solve this system. Make sure to follow the standard ordering of operations, even when it is tempting to do some ad hoc steps! Show your work in a reasonable way; documenting each step here will help in problem \mathbf{B} on the other side. (Hint. The entries of \mathbf{x} are small integers.)

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=4
\end{aligned}
$$

$$
\begin{aligned}
& 12 x_{2}+8 x_{3}=24 \\
& R_{3} \not R_{3}-\left(\frac{5}{1}\right) R_{1}: \\
& 2 x_{2}-9 x_{3}=-27 \\
& x_{1}+x_{2}+x_{3}=4 \\
& \cdots \quad 12 x_{2}+8 x_{3}=24 \\
& -27-\frac{1}{6} 24 \\
& =-27-4 \\
& x_{3}=\frac{-31}{-3 / 3}=3 \\
& x_{2}=\frac{24-8(3)}{12}=(0) \\
& x_{1}=\frac{4-0-3}{1}=1
\end{aligned}
$$

B. Write the system in problem \mathbf{A} (previous page) using matrices and vectors, as $A \mathbf{x}=\mathbf{b}$:

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-8 & 4 & 0 \\
5 & 7 & -4
\end{array}\right], \quad b=\left[\begin{array}{c}
4 \\
-8 \\
-7
\end{array}\right]
$$

Next, write down the three elimination matrices that correspond to the row operations you did. That is, fill-in these 3×3 matrices:
$E_{21}=\left[\begin{array}{lll}1 & 0 & 0 \\ 8 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], E_{31}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 0 & 1\end{array}\right], E_{32}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{6} & 1\end{array}\right]$
Finally, multiply-out matrices, as follows. You should see that all the elimination steps on the previous page are reproduced here.

C. Thus elimination converts the linear system to an upper triangular system:

$$
A \mathbf{x}=\mathbf{b} \quad \longrightarrow \quad U \mathbf{x}=\mathbf{c}
$$

What are U and \mathbf{c} ?:

$$
U=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 12 & 8 \\
0 & 0 & -3 / 3
\end{array}\right], \quad c=\left[\begin{array}{c}
4 \\
24 \\
-31
\end{array}\right]
$$

Do back-substitution to (again) solve the system and find x.

$$
\begin{gathered}
x_{3}=\frac{-31}{-31 / 3}=3, \quad x_{2}=\frac{24-8 \cdot 3}{12}=0, \\
x_{1}=\frac{4-0-3}{1}=0
\end{gathered}
$$

