Worksheet: 4 curve-fitting problems

The four graphs below show solutions of data-fitting problems. The curve goes exactly through the data in problem 1. It comes as close to the data as possible, in the least-squares sense, in problems 2, 3, 4. We think of this as solving a linear system, but in fact when the number of points exceeds the number of parameters the system is over-determined. The system is "solved" via the normal equations as in $\S 4.3$:

$$
" A \mathbf{v}=\mathbf{b} \text { " } \quad \xrightarrow{\text { replaced by }} \quad A^{\top} A \mathbf{v}=A^{\top} \mathbf{b}
$$

Problem 1 solves a square linear system as usual, and there is nothing to do.
For problems 2, 3, 4, I have shown A and \mathbf{b} and plotted the data. Using Matlab, you should
i) Confirm A and \mathbf{b} for the given data and the given form of $p(x)$.
ii) Input A and \mathbf{b}, and form $A^{\top} A$ and $A^{\top} \mathbf{b}$.
iii) Solve the normal equations $A^{\top} A \mathbf{v}=A^{\top} \mathbf{b}$ to get \mathbf{v} for the curve I plotted.
iv) Examine the projection $P=A\left(A^{\top} A\right)^{-1} A^{\top}$ and the vector $P \mathbf{b}=A \mathbf{v}$.

1. quadratic exactly fits $\mathbf{3}$ points

data $(x, y):(0,1),(1,-1),(3,2)$
curve: $p(x)=v_{1}+v_{2} x+v_{3} x^{2}$
solved: $A \mathbf{v}=\mathbf{b}$
$A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & 9\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$
$\Longrightarrow \quad \mathbf{v}=\left[\begin{array}{c}1 \\ -19 / 6 \\ 7 / 6\end{array}\right]$

2. line least-squares fits 4 points

data $(x, y):(0,1),(1,-1),(1.5,0.5),(3,2)$
curve: $p(x)=v_{1}+v_{2} x$
solved: $A^{\top} A \mathbf{v}=A^{\top} \mathbf{b}$

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1 & 0 \\
1 & 1 \\
1 & 1.5 \\
1 & 3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
1 \\
-1 \\
0.5 \\
2
\end{array}\right] \\
& \Longrightarrow \quad \mathbf{v}=\left[\begin{array}{c}
-4 / 75 \\
37 / 75
\end{array}\right]
\end{aligned}
$$

3. quadratic least-squares fits $\mathbf{6}$ points data $(x, y):(0,-1),(0.5,0),(1,2),(1.5,2.5)$, $(2.5,3),(3,1)$
curve: $p(x)=v_{1}+v_{2} x+v_{2} x^{2}$
solved: $A^{\top} A \mathbf{v}=A^{\top} \mathbf{b}$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0.5 & 0.25 \\
1 & 1 & 1 \\
1 & 1.5 & 2.25 \\
1 & 2.5 & 6.25 \\
1 & 3 & 9
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
-1 \\
0 \\
2 \\
2.5 \\
3 \\
1
\end{array}\right] \\
& \Longrightarrow \quad \mathbf{v}=\left[\begin{array}{c}
-1.35238 \\
4.40000 \\
-1.16190
\end{array}\right]
\end{aligned}
$$

4. trigonometric least-squares fits $\mathbf{6}$ points
data $(x, y):(0,-1),(0.5,0),(1,2),(1.5,2.5)$, $(2.5,3),(3,1)$
curve: $p(x)=v_{1}+v_{2} \sin x+v_{2} \cos x$ solved: $A^{\top} A \mathbf{v}=A^{\top} \mathbf{b}$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & \sin (0) & \cos (0) \\
1 & \sin (0.5) & \cos (0.5) \\
1 & \sin (1) & \cos (1) \\
1 & \sin (1.5) & \cos (1.5) \\
1 & \sin (2.5) & \cos (2.5) \\
1 & \sin (3) & \cos (3)
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
-1 \\
0 \\
2 \\
2.5 \\
3 \\
1
\end{array}\right] \\
& \Longrightarrow \quad \mathbf{v}=\left[\begin{array}{c}
-0.15410 \\
3.00287 \\
-1.08695
\end{array}\right]
\end{aligned}
$$

