Worksheet: 2 views of linear equations
Do these sketches and calculations with a group, if possible.
A. Here are three equations in two unknowns:

$$
\begin{aligned}
2 x+2 y & =6 \\
x-3 y & =-1 \\
4 x+y & =0
\end{aligned}
$$

We can also write this as $A \mathbf{x}=\mathbf{b}$ where A is a 3×2 matrix and $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right], \mathbf{b}=\left[\begin{array}{c}6 \\ -1 \\ 0\end{array}\right]$ are vectors.
(i) Sketch the "row picture": sketch each equation as a line in the (x, y) plane. Do they intersect?

(ii) Sketch the "column picture": sketch each column of A, and also \mathbf{b}, in three-dimensional
space. Will you be able to find a linear combination of the columns of A which gives \mathbf{b} ?

$$
\begin{aligned}
& A=\left[\begin{array}{l}
2 \\
2 \\
4 \\
4
\end{array}\right] \therefore \vec{a}_{1}=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \quad b_{3} \uparrow \quad \text { No }_{0}, \vec{a}_{1} \text { and } \vec{a}_{2} \\
& \vec{b}=\left[\begin{array}{l}
6 \\
- \\
0
\end{array}\right] \quad \vec{a}_{2}=\left[\begin{array}{l}
2 \\
-3 \\
-3
\end{array}\right]
\end{aligned}
$$

not in one
not in one

$$
10 \text { cation }
$$

(which is what
I mont to ark) I mont to ask) have a solution, and find that solution.
method: pick two equations, solve those for (x, y), then determine other entry of now \vec{b} by left side of other equation

$$
\begin{aligned}
& \text { one } \\
& \text { one apple }\left\{\begin{array}{l}
2 x+2 y=6 \\
x-3 y=-1
\end{array}\right. \\
& \begin{array}{r}
2 x+2 y=6 \\
-4 y=-4
\end{array} \rightarrow \begin{array}{c}
y=1 \\
x=2 \\
\begin{array}{c}
\text { new } \\
\vec{b}=\left[\begin{array}{c}
6 \\
-1 \\
9
\end{array}\right]
\end{array}<\begin{array}{c}
\text { 3rdem: } \\
4 x+y=9
\end{array}
\end{array} \\
& \text { B. (i) Consider the new linear system } A \mathbf{x}=\mathbf{b} \text { where }
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 2 & 0 \\
3 & 2 & 1
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
0 \\
4 \\
6
\end{array}\right]
$$

and $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ is unknown (for now). Sketch the row picture, that is, sketch each of the three equations as a plane. Note it is easier to sketch each plane on separate axes; show three sketches.

$$
x-z=0
$$

$$
2 x+2 y=4
$$

$$
3 x+2 y+z=6
$$

parable
to y-axis (very hard to get useful sketches
... but thinking about creating them is useful!)

$$
\begin{aligned}
& \text { (ii) What is the solution of the system in part (i)? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { [doing elimination] }
\end{aligned}
$$

