Worksheet: Is it a subspace?
A vector space is a set of vectors with a defined addition operation and a scalar multiple operation. (Various sensible rules-p. 130-apply to those operatrons.) A subspace is a subset S of the vector space for which any linear combination of elements from S is in S.

You can verify that S is a subspace by checking if 0 is in S, if $\mathbf{v}+\mathbf{w}$ is in S whenever \mathbf{v}, \mathbf{w} are in S, and finally if $c \mathbf{v}$ is in S whenever \mathbf{v} is in S and c is any real number.

For each problem below, sketch S if possible, and otherwise describe it. Say whether S is a subspace or not. If so, provide a brief justification. If not, describe an element that is not in S but would be if S were a subspace.

1. Vector space: \mathbf{R}^{2}. S is the set of all points in the first quadrant of \mathbf{R}^{2}.

$$
\begin{aligned}
& \vec{V}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { is in } S \\
& \text { but }-\vec{V} \text { is not }
\end{aligned}
$$

2. Vector space: all real-valued functions on the line. S is the set of all polynomials.
yes if $p(x)$ and $q(x)$ are in S then

$$
\begin{array}{ll}
p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \quad(\text { degree } n) \\
q(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \quad(\text { degree } m)
\end{array}
$$

then $c p(x)$ and $p(x)+q(x)$ are a so polynomials of degree n and $\max \{n, m\}$ respectively,
3. Vector space: $\mathbf{R}^{3} . S$ is the set of all vectors $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ where a, b, c are integers.

$$
\begin{aligned}
& \text { no } \vec{v}=1 \cdot \hat{\imath}+0 \cdot \hat{\jmath}+0 \cdot \hat{k}=\hat{\imath} \text { is in } s \\
& \quad \text { but } \frac{1}{2} \vec{v}=\frac{1}{2} \hat{\imath} \text { is not in } S
\end{aligned}
$$

4. Vector space: \mathbf{R}^{2}. $S=$ all solutions to $A \mathbf{x}=\mathbf{0}$ where $A=\left[\begin{array}{cc}2 & -3 \\ 6 & 7\end{array}\right]$.
yes $\begin{aligned} 2 x_{1}-3 x_{2}=0 \\ 6 x_{1}+7 x_{2}=0\end{aligned} \xrightarrow{\text { aim. } 2 x_{1}-3 x_{2}=0} \Rightarrow \begin{aligned} & x_{1}=0 \\ & x_{2}=0\end{aligned}$

$$
16 x_{2}=0 \rightarrow x_{2}=0
$$

$$
S=\{\overrightarrow{0}\}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right\}=z \text { is }
$$

the trivial vectorspare
5. Vector space: \mathbf{R}^{2}. $S=$ all solutions to $A \mathbf{x}=\mathbf{b}$ where $A=\left[\begin{array}{cc}2 & -3 \\ -6 & 9\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 3\end{array}\right]$.
no

$$
\begin{aligned}
& 2 x_{1}-3 x_{2}=-1 \\
& -6 x_{1}+9 x_{2}=3
\end{aligned} \quad \text { e } \lim _{3} \quad \begin{aligned}
& 2 x_{1}-3 x_{2}=-1 \\
& 0 x_{1}+0 x_{2}=0
\end{aligned}
$$

let $x_{2}=t$. Then $x_{1}=\frac{-1+3 t}{2}=-\frac{1}{2}+\frac{3}{2} t$
so $S=\left\{\left[\begin{array}{c}-1 / 2 \\ 0\end{array}\right]+t\left[\begin{array}{c}3 / 2 \\ 1\end{array}\right]\right\}$ where t is any real number
6. Vector space: $\mathbf{R}^{2} . S=$ all solutions to $A \mathbf{x}=\mathbf{0}$ where $A=\left[\begin{array}{cc}2 & -3 \\ -6 & 9\end{array}\right]$.

yes

$$
\begin{aligned}
& 2 x_{1}-3 x_{2}=0 \\
& -6 x_{1}+9 x_{2}=0
\end{aligned} \xrightarrow{e l i m} \begin{aligned}
& 2 x_{1}-3 x_{2}=0 \\
& 0 x_{1}+0 x_{2}=0
\end{aligned}
$$

$$
\text { let } x_{2}=t
$$

so

$$
S=\left\{t\left[\begin{array}{c}
3 / 2 \\
1
\end{array}\right]\right\} \text { for any } t
$$

so $x_{1}=\frac{3}{2} t$
7. Vector space: \mathbf{R}^{3}. $S=$ all solutions to $A \mathbf{x}=\mathbf{0}$ where $A=\left[\begin{array}{ccc}3 & 2 & 1 \\ 0 & 1 & 1 \\ -6 & -3 & -1\end{array}\right]$.
yes $\xrightarrow{\text { elm }}\left[\begin{array}{lll}3 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right] \rightarrow\left[\begin{array}{lll}3 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$
$\begin{aligned} 3 x_{1}+2 x_{2}+x_{3} & =0 \\ x_{2}+x_{3} & =0\end{aligned}$

