Worksheet: eigenstuff, and diagonalizing matrices
(a) For each matrix, compute the eigenvalues and eigenvectors by hand. Confirm your result using computer assistance.
(b) Is the matrix diagonalizable? If it is, form a (convenient) invertible matrix X of eigenvectors, and a diagonal matrix Λ of eigenvalues
(c) If the matrix was diagonalizable, confirm that $A=X \Lambda X^{-1}$. This step may be done with computer assistance.

$$
\text { 1. } \begin{aligned}
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right] & \left.\quad \begin{array}{rl}
p(\lambda) & =\operatorname{det}(A-\lambda I) \\
& =(1-\lambda)(2-\lambda)(3-\lambda)
\end{array}\right)=(1)
\end{aligned}
$$

$$
\lambda_{1}=1:\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow \overrightarrow{x_{1}}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

$$
\lambda_{2}=2:
$$

$$
\left[\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow \overrightarrow{x_{2}}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

$$
\underline{\lambda_{3}}=3:\left[\begin{array}{ccc}
-2 & 1 & 1 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right] \cdots \vec{x}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Since $\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ are linearly-independent,
is invertible. So A is diagonalizable

$$
A=X \Lambda X^{-1} \text { with } \Omega=\left[\begin{array}{ll}
1 & \\
& 3
\end{array}\right]
$$

Matlab: $\gg A=\ldots$ multiple!

$$
\begin{aligned}
& \text { 2. } B=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] p(\lambda)=(1-\lambda)(1-\lambda)=0 \quad \therefore \quad \lambda_{1}=1, \lambda_{2}=1 \\
& \text { (خ1}=1:\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow \vec{x}_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

but $\vec{x}_{2}=c \vec{x}_{1}$! so $B_{\text {is not diaginalizable }}$ n (one-dimensional space of eigenvectors)

$$
\begin{aligned}
& \text { 3. } \begin{aligned}
& C=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] p(\lambda)=(1-\lambda)(1-\lambda)^{2}-(1-\lambda)=(1-\lambda)\left((1-\lambda)^{2}-1\right) \\
&=(1-\lambda)\left(\lambda^{2}-2 \lambda\right)=\lambda(1-\lambda)(\lambda-2)=0 \\
& \underline{\lambda_{1}}=0:
\end{aligned}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\overrightarrow{0} \Rightarrow \vec{x}_{1}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \\
& \underline{\lambda_{2}}=1:\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\overrightarrow{0} \Rightarrow \vec{x}_{2}=\left[\begin{array}{lll}
-1 & 0 & 1 \\
0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \\
& \underline{\lambda_{3}}=2:\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \Rightarrow \overrightarrow{0} \Rightarrow \vec{x}_{3}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

So C is diagonalizable:

$$
C=X \Lambda X^{-1} \text { with } \Lambda \Lambda=\left[\begin{array}{ll}
0 & 1 \\
& 1
\end{array}\right]
$$

(Matlab check as for A.)

