

11 April 2022 Not to be turned in!

Worksheet: eigenstuff, and diagonalizing matrices

(a) For each matrix, compute the eigenvalues and eigenvectors by hand. Confirm your result using computer assistance.

(b) Is the matrix diagonalizable? If it is, form a (convenient) invertible matrix X of eigenvectors, and a diagonal matrix Λ of eigenvalues

(c) If the matrix was diagonalizable, confirm that $A = X\Lambda X^{-1}$. This step may be done with computer assistance.

1. $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$	$(\lambda) = det (A - \lambda I)$	
	$= (1-\lambda)(2-\lambda)(3-\lambda)$	
	$\begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \\ Z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \implies X_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	
		w
	$\begin{bmatrix} x_1 \\ x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{array}{c} x_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{array}$	
$\lambda_3 = 3: \begin{bmatrix} -2 & 1 \\ 0 & -1 \\ 0 & 0 \end{bmatrix}$	$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right \longrightarrow \left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
Since {x1, x2, x	33 are linearly-independent, X=[0]	
is invertible.	So Airs diagonalizable	
F	$f = X \Lambda X'$ with $\Lambda = \lfloor 2 \rfloor$	
Mathab: >> A	S=eig(A) - check X, A	2
>> X*	$D \times inv(X) \leftarrow check equals A$	