Math 314
Exam 2

Name \qquad
April 10, 2013
Show all your work.

1. $\left(16\right.$ pts.) Let $A=\left(\begin{array}{cc}1 & -1 \\ -2 & 0\end{array}\right)$.
(a) (6 pts.) Find the eigenvalues of A.
(b) (6 pts.) For each eigenvalue, determine an eigenvector.
(c) (4 pts.) Give matrices Λ and S for a diagonalization $A=S \Lambda S^{-1}$.
2. (11 pts.) In \mathbb{R}^{4}, a subspace V has basis $(1,2,-1,1),(2,0,1,1)$. Find a basis for V^{\perp}.
3. (15 pts.) The vectors

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{l}
2 \\
0 \\
2 \\
0
\end{array}\right)
$$

span a 3-d subspace of \mathbb{R}^{4}. Find an orthonormal basis for that subspace.
4. (15 pts. -5 pts. each) Suppose you wanted to fit a straight line $y=m x+b$ to the (x, y) data points

$$
(-1,2),(0,1),(1,-2),(2,-2)
$$

(a) Give, in matrix form, a system of 4 equations in 2 unknowns that you would like to solve to find this line, even though this system has no solution.
(b) Give, in matrix form, a system of 2 equations in 2 unknown that you could solve to find the least-squares best fit line. (Do NOT solve them.)
(c) The idea behind what is being done here is that if $A \mathbf{x}=\mathbf{b}$ has no solution due to suspected errors in \mathbf{b}, then we should replace \mathbf{b} with a different vector so the system becomes solvable. This vector is found by projecting \mathbf{b} onto what?
5. (12 pts.) Suppose

$$
A=\left(\begin{array}{ccccc}
2 & 1 & 1 & -1 & 2 \\
4 & 2 & 3 & -1 & 5 \\
2 & 1 & -2 & -4 & -1 \\
-2 & -1 & 0 & 2 & -1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
1 & -3 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right)\left(\begin{array}{ccccc}
2 & 1 & 1 & -1 & 2 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(a) (3 pts.) Give a basis for the rowspace of A.
(b) (3 pts.) Give a basis for the column space of A.
(c) (3 pts.) What is the dimension of the nullspace of A ?
(d) (3 pts.) What is the dimension of the left nullspace of A ?
6. (10 pts.) Calculate the determinant

$$
\left|\begin{array}{cccc}
1 & 1 & 2 & 1 \\
1 & 1 & 3 & 3 \\
2 & 1 & -1 & 1 \\
1 & 1 & 2 & 4
\end{array}\right|
$$

7. (21 pts. -3 pts. each) Fill in the blanks:
(a) If the columns of an $m \times r$ matrix A are independent, then a matrix to project \mathbb{R}^{m} onto the column space of A can be found using the formula \qquad
(b) If the 'big formula' for the determinant of a 5×5 matrix were written out, it would be a sum of
\qquad terms, each of which is ± 1 times a product of \qquad entries of the matrix.
(c) The inverse of an orthogonal matrix Q is most easily computed by \qquad
(d) If a 3×3 matrix A has eigenvalues $3,1,-2$, then the eigenvalues of A^{3} are \qquad .
(e) If $\operatorname{det} B=-13$, then $\operatorname{det} B^{T}=$ \qquad .
(f) If P is a 5×5 matrix that projects vectors in \mathbb{R}^{5} onto a 3-dimensional subspace W, then the 5 eigenvalues of P will be \qquad -
(g) If $|A|=2 / 5$, then $\left|A^{-1}\right|=$ \qquad .
