Math 314Exam 2

Name :______ April 10, 2013

Show all your work.

1. (16 pts.) Let
$$A = \begin{pmatrix} 1 & -1 \\ -2 & 0 \end{pmatrix}$$
.

- (a) (6 pts.) Find the eigenvalues of A.
- (b) (6 pts.) For each eigenvalue, determine an eigenvector.

(c) (4 pts.) Give matrices Λ and S for a diagonalization $A = S\Lambda S^{-1}$.

2. (11 pts.) In \mathbb{R}^4 , a subspace V has basis (1, 2, -1, 1), (2, 0, 1, 1). Find a basis for V^{\perp} .

3. (15 pts.) The vectors

$$\mathbf{v}_1 = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 2\\0\\2\\0 \end{pmatrix}$$

span a 3-d subspace of \mathbb{R}^4 . Find an orthonormal basis for that subspace.

4. (15 pts.—5 pts. each) Suppose you wanted to fit a straight line y = mx + b to the (x, y) data points

(-1,2), (0,1), (1,-2), (2,-2).

- (a) Give, in matrix form, a system of 4 equations in 2 unknowns that you would *like* to solve to find this line, even though this system has no solution.
- (b) Give, in matrix form, a system of 2 equations in 2 unknown that you could solve to find the least-squares best fit line. (Do NOT solve them.)
- (c) The idea behind what is being done here is that if $A\mathbf{x} = \mathbf{b}$ has no solution due to suspected errors in \mathbf{b} , then we should replace \mathbf{b} with a different vector so the system becomes solvable. This vector is found by projecting \mathbf{b} onto what?

5. (12 pts.) Suppose

$$A = \begin{pmatrix} 2 & 1 & 1 & -1 & 2\\ 4 & 2 & 3 & -1 & 5\\ 2 & 1 & -2 & -4 & -1\\ -2 & -1 & 0 & 2 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 2 & 1 & 0 & 0\\ 1 & -3 & 1 & 0\\ -1 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 1 & -1 & 2\\ 0 & 0 & 1 & 1 & 1\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

(a) (3 pts.) Give a basis for the rowspace of A.

- (b) (3 pts.) Give a basis for the column space of A.
- (c) (3 pts.) What is the dimension of the nullspace of A?
- (d) (3 pts.) What is the dimension of the left nullspace of A?
- 6. (10 pts.) Calculate the determinant

1	1	2	1	
1	1	3	3	
$\begin{array}{c} 1 \\ 1 \\ 2 \end{array}$	1	-1	$\begin{array}{c} 1 \\ 3 \\ 1 \end{array}$	•
1	1	2	4	

- 7. (21 pts.—3 pts. each) Fill in the blanks:
 - (a) If the columns of an $m \times r$ matrix A are independent, then a matrix to project \mathbb{R}^m onto the column space of A can be found using the formula _____
 - (b) If the 'big formula' for the determinant of a 5×5 matrix were written out, it would be a sum of ______ terms, each of which is ± 1 times a product of ______ entries of the matrix.
 - (c) The inverse of an orthogonal matrix Q is most easily computed by _____
 - (d) If a 3×3 matrix A has eigenvalues 3, 1, -2, then the eigenvalues of A^3 are _____.
 - (e) If det B = -13, then det $B^T =$ _____.
 - (f) If P is a 5×5 matrix that projects vectors in \mathbb{R}^5 onto a 3-dimensional subspace W, then the 5 eigenvalues of P will be _____.
 - (g) If |A| = 2/5, then $|A^{-1}| =$ _____.