\qquad
Exam 1
Show your work on all problems.

1. (19 pts.) A matrix A has $L U$ factorization given by

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-3 & 4 & 1
\end{array}\right)\left(\begin{array}{cccc}
2 & -1 & 1 & 1 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Answer the following questions about A. (You should not need to multiple L and U to get A).
(a) (3 pts.) Describe exactly the 3rd elimination step that is performed on A to reduce it to echelon form.
(b) (4 pts.) Are there vectors \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ has no solution? Explain your reasoning.
(c) $(7$ pts. $)$ Give a basis for the nullspace of A .
(d) (5 pts.) For $\mathbf{b}=(1,3,1)$, a solution to $A \mathbf{x}=\mathbf{b}$ is $\mathbf{x}=(1,1,0,0)$. Could this be the only solution? If not, give all solutions.
2. (12 pts. -6 pts. each) If A is $m \times n$, then
(a) $A \mathbf{x}=\mathbf{b}$ will be solvable for every \mathbf{b} if the (circle one) column space / nullspace of A is \qquad . This happens when the rank of A is \qquad -
(b) $A \mathbf{x}=\mathbf{b}$ will have at most one solution if the (circle one) column space / nullspace of A is \qquad . This happens when the rank of A is \qquad -.
3. (13 pts.) For

$$
A=\left(\begin{array}{ccc}
0 & 1 & -1 \\
-1 & -1 & 0 \\
2 & 0 & 1
\end{array}\right)
$$

either find A^{-1}, or show it does not exist.
4. (10 pts.) Determine whether the following vectors in \mathbb{R}^{4} are independent.

$$
(1,0,-1,1),(-1,1,2,1),(1,1,2,3)
$$

5. (18 pts. -4 pts. each $M, 2$ pts. each M^{-1}) Give matrices M that perform the following operation to a 3×3 matrix A when $M A$ is computed. Also, give M^{-1}.
(a) Reorder the rows of A so that the 3 rd is on top, the 1 st in the middle, and the 2 nd at the bottom:

$$
M=
$$

$$
M^{-1}=
$$

(b) Multiply rows 1,2 , and 3 by the scalars 2, 4, and 8 , respectively:

$$
M=\quad M^{-1}=
$$

(c) Add twice the first row to the third:

$$
M=\quad M^{-1}=
$$

6. (10 pts. -2 pts. each) Suppose A is 4×3, and when $\mathbf{b}=(-1,1,2,-2)$ the solutions to $A \mathbf{x}=\mathbf{b}$ form a line. Then
(a) The solutions (circle one) form / do not form a subspace of \mathbb{R}^{3}.
(b) The rank of A must be \qquad -
(c) For a randomly chosen \mathbf{b} in \mathbb{R}^{4} the problem $A \mathbf{x}=\mathbf{b}$ (circle one) will have / probably will have / probably will not have / will not have a solution.
(d) The nullspace of A is a (circle one) point / line / plane / 3-space/4-space.
(e) The row space of A is a (circle one) point / line / plane / 3-space/4-space.
7. (10 pts.) Find the $L D L^{T}$ factorization of $A=\left(\begin{array}{ll}2 & 3 \\ 3 & 1\end{array}\right)$.
8. (8 pts. -4 pts. each) Short answers:
(a) Give the formula for the inverse of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
(b) If the $L U$ factorization of an $n \times n$ matrix A is known, then $A \mathbf{x}=\mathbf{b}$ can be solved by solving what triangular systems?
