SOLUT ToNs

Math 314 Name :
Final Exam

December 17, 2014

Show your work on all problems.
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(b) (2 pts.) For a different vector b, could Ax = b have no solutions? Briefly explain why.
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(¢) (2 pts.) For a different vector b, could Ax = b have exactly one solution? Briefly explain why. b n
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2. (6 pts.) Using elimination, find A~!, or show it doesn’t exist, for A =
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3. (7 pts.) Elimination on A produces the reduced row echelon matrix U, where
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(a) (1 pt.) What is the rank of A? Vo %W
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(2 pts.) What is a basis for the row space of A7o
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(¢) (2 pts.) What is a basis for the column space of A7
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(2 pts.) What is a basis for the nu space space of A?
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4. (7 pts.) Let V be the vector space of polynomials of degree at most 3, with basis 1, z, 2, 23. Consider
the transformation T : V — R! that evaluates a polynomial in V at z = 2.
(For instance, T'(1 — x + 323) = 1 — 2 + 3(2)% = 23.)

(a) (3 pts.) Explain why T is a linear transformation. | §- “a(x) 5 %&) are polgmmls
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b) (4 pts.) Using the above basis for V and the basis e; = 1 for R}, give the 1 x 4 matrix expressing
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) that uses an orthogonal matrix.
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6. (6 pts.) Suppose A is a 3 x 5 matrix.

5. (10 pts.) Find a diagonalization of A = (

(a) (2 pts.) If A is a randomly chosen matrix, what are the most likely dimensions of the nullspace
and columnspace?
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(b) (4 pts.) If for some particular vector b € R?, the equation Ax = b has no solutions, what are the
possible dimensions of the nullspace and column space?
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(7 pts.) Find the volume of the parallelepiped (or “box”) with 3 edges given by (1,—1,0), (1,1,1), and
0 1,-1).
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8. (12 pts.—2 pts. each) A matrix A has singular value decomposition A = UXV7T with

/2 1/2  1/2  1/2 . AUS (-‘»7(3
O R R T ) BT O 1/\/5 .
/2 1/2 -1/2 -1/2 Vb
12 —1/2 —1/2 1/2 0 1
and singular values 01 = 5,00 = 3, 03 = 2.
(a) Give X. (Be careful that your answer has the right size.)
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(b) What are all possibilities for the numbers a, b in column 3 of V'? (If you knew A, there would be
only one possibility, but A is not given here).
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(¢) Give a basis for the the column space of A.
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(d) Give a basis for the row space of A
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(e) The columns of U are eigenvectors of what matrix?
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9. (6 pts.) Find an orthonormal basis for the subspace of R* spanned by vi = (0,1,0,1), v = (1,—1,1,1),
and v = (1,1,1,1).
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10. (8 pts.—2 pts. each) Give matrices that perform the following operations on vectors:

(a) Reorder the entries so that (a, b, ¢) becomes (¢, b, a).
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(b) Rotate a vector in R? counterclockwise by angle 6. ( 6 - FG/L 3 R = '
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) Subtract 5 times the top entry from the third entry of a vector in R4
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) Project vectors in R? onto the line spanned by (1, —1)
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11. (20 pts.) Complete the following.

(a) (2 pts.) If Ais mxmn, then Ax = b will be solvable for every b if the rank of A is m

(b) (4 pts.) If Ax = b has no solution, the least-squares best-fit solution can be found by solv-
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(¢) (2 pts.) The definition of the dimension of a space is. ..
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(d) (2 pts.) If P is a matrix that projects vectors onto a subspace V of R™, then I — P is a matrix
that. ..
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(e) (4 pts.) The value of 722 + 4y + 32 IS / IS NOT (choose one) always positive for (z,y) # (0,0)
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(f) (2 pts.) The definition of vectors vy, va, ..., vy being linearly independent is. ..
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(g) (4 pts.) Before attempting to find the inverse of a large square matrix, it would be nice to know
—

its determinant, since the inverse exists exactly when the determinant of A is n On%%
However, it is generally not worthwhile to calculate the determinant in this situation since. ..
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