Math 314
Final Exam

Name:
December 17, 2014

Show your work on all problems.

1. (10 pts.) For

$$
A=\left(\begin{array}{llll}
2 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
4 & 2 & 3 & 1
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)
$$

(a) $(6$ pts. $)$ Find all solutions to $A \mathbf{x}=\mathbf{b}$.

$$
\rightarrow\left(\begin{array}{cccc}
2 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{llll}
2 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\begin{gathered}
x_{2}=s, x_{4}=t \quad \text { (free) } \\
2 x_{1}+x_{2}+x_{3}=-1 \\
x_{3}+x_{4}=1 \\
x_{3}=1-t \\
2 x_{1}+s+(1-t)=-1 \\
x_{1}=\frac{1}{2}(-1-1+t-s) \\
=-1+\frac{1}{2} t-\frac{1}{2} s
\end{gathered}
$$

(b) (2 pts.) For a different vector \mathbf{b}, could $A \mathbf{x}=\mathbf{b}$ have no solutions? Briefly explain why. Yes. Because row of zeros weknav $N\left(A^{\top}\right) \neq Z$, so if
(c) (2 pts.) For a different vector \mathbf{b}, could $A \mathbf{x}=\mathbf{b}$ have exactly one solution? Briefly explain why.

No. $N(A) \neq Z$ so the are muttipk solution is the is one solution.
2. (6 pts.) Using elimination, find A^{-1}, or show it doesn't exist, for $A=\left(\begin{array}{ccc}0 & 1 & 2 \\ 1 & -1 & 0 \\ 1 & 0 & 1\end{array}\right)$.

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
0 & 1 & 2 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & -1 & 0 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc|ccc}
1 & -1 & 0 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc|ccc}
1 & -1 & 0 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & -1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 2 & 1 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
1 & 0 & -1 & -1 & -12 \\
0 & 1 & 0 & -1 & -1 \\
0 & 0 & 2 & 1 & 1
\end{array}\right)
\end{aligned}
$$

3. (7 pts.) Elimination on A produces the reduced row echelon matrix U, where

$$
A=\left(\begin{array}{cccc}
1 & 3 & 1 & 8 \\
1 & 3 & 0 & 2 \\
-1 & -3 & 1 & 4 \\
2 & 6 & 1 & 11
\end{array}\right), \quad U=\left(\begin{array}{cccc}
1 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(a) (1 pt.) What is the rank of A ?
nonzero

$$
\operatorname{rank}=3
$$

(b) (2 pts.) What is a basis for the row space of A ?

$$
\left.C\left(A^{\top}\right)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right], \begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\}
$$

(c) (2 pts.) What is a basis for the column space of a? $\left.\left.87 \begin{array}{l}8 \\ 2 \\ \hline\end{array}\right]\right\}$ pivot columns
(d) (2 pts.) What is a basis for the nullspace space of A ?
x_{2} tree \Rightarrow

$$
S_{1}=\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right] \Rightarrow N(A)=\operatorname{span}\left\{\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]\right\}
$$

4. (7 pts.) Let V be the vector space of polynomials of degree at most 3 , with basis $1, x, x^{2}, x^{3}$. Consider the transformation $T: V \rightarrow \mathbb{R}^{1}$ that evaluates a polynomial in V at $x=2$.

$$
\text { (For instance, } T\left(1-x+3 x^{3}\right)=1-2+3(2)^{3}=23 \text {.) }
$$

(a) (3 pts.) Explain why T is a linear transformation. if $p(x), q(x)$ are polynomils
then $T(a p(x)+b q(x))=a p(2)+b q(2)=a T(p)+b T(q)$;
evaluation is a linear process
(b) (4 pts.) Using the above basis for V and the basis $e_{1}=1$ for \mathbb{R}^{1}, give the 1×4 matrix expressing
T.

$$
T\left(\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right]\right)=\alpha+2 \beta+4 \gamma+8 \delta
$$

became $p(x)=\alpha+\beta x+\gamma x^{2}+\delta x^{3}$

$$
P(2)=\alpha+\beta \cdot 2+\gamma \cdot 4+8 \cdot 8
$$

So

$$
T\left(\left[\begin{array}{c}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right]\right)=\left[\begin{array}{llll}
1 & 2 & 4 & 8
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right]
$$

$$
\begin{aligned}
p(\lambda) & =\operatorname{det}(A-\lambda I)=(1-\lambda)(1-\lambda)-9=\lambda^{2}-2 \lambda-8 \\
& =(\lambda-4)(\lambda+2) \quad \therefore \quad \lambda_{1}=-2, \quad \lambda_{2}=4
\end{aligned}
$$

$\lambda_{1}=-2:\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right]\left[\begin{array}{lll}x_{1} \\ x_{2}\end{array}\right]=\overrightarrow{0} \quad \therefore \quad \vec{x}_{1}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] \therefore \quad \vec{q}_{1}=\left[\begin{array}{c}-1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$
$\lambda_{2}=4:\left[\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \Rightarrow \overrightarrow{0} \cdot \overrightarrow{x_{2}}=\left[\begin{array}{l}1 \\ 1\end{array}\right] \therefore \vec{q}_{2}=\left[\begin{array}{c}1 / \sqrt{2} \\ x_{\sqrt{2}}\end{array}\right]$
$\therefore \quad A=Q \Omega Q^{\top}$ where $Q=\left[\begin{array}{cc}-1 / \sqrt{\sqrt{2}} & 1 / \sqrt{2} \\ \sqrt{2} & 1 / \sqrt{2}\end{array}\right], \Lambda=\left[\begin{array}{cc}-20 \\ 0 & 4\end{array}\right]$
6. (6 pts.) Suppose A is a 3×5 matrix.
(a) (2 pts.) If A is a randomly chosen matrix, what are the most likely dimensions of the nullspace
typically: and columspacee?
$\operatorname{dim} C(A)=3, \operatorname{dim} N(A)=2 \quad($ rank $=2)$
(b) (4 pts.) If for some particular vector $\mathbf{b} \in \mathbb{R}^{3}$, the equation $A \mathbf{x}=\mathbf{b}$ has no solutions, what are the

$$
\left.\begin{array}{rl}
\operatorname{dim} C(A)=0,1,2 \\
\operatorname{dim} N(A)=5,4,3
\end{array}\right\} \begin{aligned}
& \operatorname{dim} C(A)+\operatorname{dim} N(A) \\
& = \\
& =5
\end{aligned}
$$

7. $\begin{aligned} & (7 \mathrm{pts} .) \\ & (0,1,-1) \text { Fin }\end{aligned}$

$$
\text { = }=5
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 1 \\
0 & 1 & -1
\end{array}\right] \Rightarrow(\text { volume })=|\operatorname{det}(A)| \\
&=|1(-1-1)-1(1)|=|-2-1|=3
\end{aligned}
$$

8. (12 pts.-2 pts. each) A matrix A has singular value decomposition $A=U \Sigma V^{T}$ with

$$
\text { ch) A matrix } \left.A \text { has singular value decomposition } A=U \Sigma V^{1} \text { with }\left(\begin{array}{cccc}
1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 & -1 / 2 \\
1 / 2 & -1 / 2 & -1 / 2 & 1 / 2
\end{array}\right), \quad V=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 / \sqrt{2} & a \\
0 & 1 / \sqrt{2} & b
\end{array}\right)\right\} \text { is } 4 \times 3
$$

and singular values $\sigma_{1}=5, \sigma_{2}=3, \sigma_{3}=2$.
(a) Give Σ. (Be careful that your answer has the right size.)

$$
\Sigma=\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(b) What are all possibilities for the numbers a, b in column 3 of V ? (If you knew A, there would be only one possibility, but A is not given here).
Since $\vec{v}_{3} \perp \vec{v}_{2}: \frac{1}{\sqrt{2}} a+\frac{1}{\sqrt{2}} b=0 \quad \therefore \quad a+b=0$ and $a^{2}+b^{2}=1$
(c) Give a basis for the the column space of A.

$$
\text { so either } a=-\frac{1}{\sqrt{2}}, b=\frac{1}{\sqrt{2}} \text { or } a=\frac{1}{\sqrt{2}}, b=\frac{-1}{\sqrt{2}}
$$

$$
\vec{u}_{1 j} \vec{u}_{2}, \vec{u}_{3}
$$

(d) Give a basis for the row space of A

$$
\vec{V}_{10} \vec{V}_{2}, \vec{V}_{3}
$$

(e) The columns of U are eigenvectors of what matrix?

$$
A A^{\top}
$$

(f) Give the pseudoinverse A^{+}, as a product of matrices.

$$
\begin{aligned}
\left(A A^{\top}\right. & =U \Sigma V^{\top}\left(u \Sigma V^{\top}\right)^{\top} \\
& \left.=u \Sigma V^{\top} V \Sigma^{\top} u^{\top}\right) \\
& =u\left(\Sigma_{\Lambda}^{\top}\right)^{\top} u^{\top}
\end{aligned}
$$

$$
A^{\dagger}=V\left[\begin{array}{cc}
1 / 5 & 0 \\
0 & 1 / 3 \\
0 & 0
\end{array}\right.
$$

$$
\begin{gathered}
A^{+} A=I \\
0 \\
0 \\
0 \\
0 \\
1 / 2
\end{gathered} 0
$$

10. ($8 \mathrm{pts} .-2$ pts. each) Give matrices that perform the following operations on vectors:
(a) Reorder the entries so that (a, b, c) becomes (c, b, a).

$$
P=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

(b) Rotate a vector in \mathbb{R}^{2} counterclockwise by angle θ.

$$
R=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

$$
\begin{aligned}
& \left(\frac{\theta=\pi / 2}{}: R=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\right. \\
& R\left[\begin{array}{l}
1
\end{array}\right]=\left[\begin{array}{l}
i \\
i
\end{array}\right], R\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{ll}
0 \\
0
\end{array}\right)
\end{aligned}
$$

(c) Subtract 5 times the top entry from the third entry of a vector in \mathbb{R}^{4}.

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-5 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$ it unshared

(d) Project vectors in \mathbb{R}^{2} onto the line spanned by $(1,-1)$.

$$
\vec{a}=\left[\begin{array}{ll}
-1
\end{array}\right] \quad P=\frac{\vec{a} \cdot a^{-1}}{\vec{a}^{\top} \vec{a}}=\frac{\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right]}{2}=\frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

11. (20 pts.) Complete the following.
(a) (2 pts.) If A is $m \times n$, then $A \mathbf{x}=\mathbf{b}$ will be solvable for every \mathbf{b} if the rank of A is \qquad M
(b) (4 pts.) If $A \mathbf{x}=\mathbf{b}$ has no solution, the least-squares best-fit solution can be found by solving $A T A \vec{x}=A^{\top}$ This is equivalent to replacing b with \qquad in the original equation.
(c) (2 pts.) The definition of the dimension of a space is... the number of vectors in a basis for the space

(d) (2 pts.) If P is a matrix that projects vectors onto a subspace V of \mathbb{R}^{n}, then $I-P$ is a matrix that... projects onto the ortagomel cmylement of V
(e) (4 pts.) The value of $7 x^{2}+4 x y+y^{2}$ IS / IS NOT (choose one) always positive for $(x, y) \neq(0,0)$
 cone red
spring 2002 because it can be expressed by the symmetric matrix $A=\left[\begin{array}{ll}7 & 2 \\ 2 & 1\end{array}\right]$ and A is positive def.

$$
7 x^{2}+4 x y+y^{2}=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
7 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

(f) (2 pts.) The definition of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ being linearly independent is...
if $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{k} \vec{v}_{k}=\overrightarrow{0}$ then $c_{1}=0, c_{2}=0, \ldots, c_{k}=0$
(g) (4 pts.) Before attempting to find the inverse of a large square matrix, it would be nice to know its determinant, since the inverse exists exactly when the determinant of A is \qquad Nonzero However, it is generally not worthwhile to calculate the determinant in this situation since...
the determininath is likely to be very large or very small, and overflow
or underflow is cuman in flatus point arithmetic

