\qquad
Final Exam
Show all your work.

1. (10 pts.) Let $A=\left(\begin{array}{ccc}0 & 1 & 1 \\ 1 & 1 & -2 \\ 1 & 3 & 0\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$.
(a) Find all solutions to $A \mathbf{x}=\mathbf{b}$.

Use your answer to (a) to answer the following, without additional calculation:
(b) Give a basis for the nullspace of A.
(c) Give a basis for the columnspace of A.
2. (6 pts.$)$
(a) (2 pts.) Give a symmetric matrix A so that $\mathbf{x}^{T} A \mathbf{x}=2 x^{2}-2 x y+y^{2}$
(b) (4 pts.) Determine whether A is positive definite. (This can be done several different ways; any correct method is acceptable as long as your work is shown.)
3. (8 pts.) The vectors $\mathbf{v}_{1}=(1,0,0,0), \mathbf{v}_{2}=(-2,1,0,2), \mathbf{v}_{3}=(-1,3,0,1)$ are a basis for a subspace of \mathbb{R}^{4}. Find an orthonormal basis for that subspace.
4. (10 pts.) Find inverses of the following matrices, if they exist. If no inverse exists, explain how you know that.
(a) $\left(3\right.$ pts.) $\left(\begin{array}{cc}1 & 4 \\ -1 & -2\end{array}\right)$
(b) $\left(7\right.$ pts.) $\left(\begin{array}{ccc}1 & 1 & 2 \\ -1 & -1 & -3 \\ 1 & 2 & 1\end{array}\right)$
5. (10 pts.) The annual changes in the population of an organism is modeled by $\mathbf{p}_{t+1}=A \mathbf{p}_{t}$, where $A=\left(\begin{array}{cc}0 & 3 \\ 0.2 & 0.7\end{array}\right)$. The first entry of \mathbf{p}_{t} refers to young, and the second to adults.
(a) (2 pts.) What is the biological meaning of the 0.2 in this matrix?
(b) (2 pts.) The diagonalization $A=S \Lambda S^{-1}$ has $\Lambda=\left(\begin{array}{cc}1.2 & 0 \\ 0 & -.5\end{array}\right)$ and $S=\left(\begin{array}{cc}5 & 6 \\ 2 & -1\end{array}\right)$. What is the stable age distribution of this model? What does it tell you about the population?
(c) (3 pts.) Sketch a graph of time vs. population size for the two groups in this model that indicates typical qualitative behavior you should see if the initial population, \mathbf{p}_{0}, is randomly chosen.
(d) (3 pts.) If the initial population were $\mathbf{p}_{0}=(10,4)$ (twice the first column of S), what would \mathbf{p}_{20} be?
6. (8 pts. -4 pts. each) Decide whether each of these transformations $T: \mathbb{R}^{2} \rightarrow R^{2}$ is linear or not. If it is not linear, explain why it is not. If it is linear, give a matrix to express it (using the standard bases).
(a) $T(x, y)=(x, y)+(1,-1)$.
(b) $T(x, y)=(y, 0)$.
7. (8 pts. -4 pts. each) Let $A=\left(\begin{array}{lll}3 & 1 & 4 \\ 0 & 1 & 5 \\ 0 & 1 & 5\end{array}\right)$.
(a) Find all eigenvalues of A.
(b) Find an eigenvector for the largest eigenvalue of A.
8. (8 pts.) Let $A=\left(\begin{array}{cccc}1 & 1 & 2 & 3 \\ 2 & -1 & 1 & 0 \\ 1 & 0 & 1 & 1\end{array}\right)$.
(a) (6 pts.) Let V be the column space of A. Find a basis for V^{\perp}.
(b) (2 pts.) What is the rank of A ? (If you did part (a) you should be able to answer this with no further computation.)
9. (8 pts.$)$ Four data points in the plane are $(x, y)=(-2,2),(-1,2),(0,1),(1,-1)$.
(a) (2 pts.) Give a matrix equation that you would like to solve (but which has no solution) to find the equation of a line $y=m x+b$ through these points.
(b) (6 pts.) Give a matrix equation that can be solved to find the least squares best-fit line for these points. (Do not solve it.)
10. (24 pts. -2 pts. each) Give short answers.
(a) We can be sure a real square matrix has real eigenvalues if it is
(b) If for some specific A, \mathbf{b}, where A is 4×5 and $\mathbf{b} \in \mathbb{R}^{4}$, we know $A \mathbf{x}=\mathbf{b}$ has no solution, then the rank of A must be (list all possibilities) \qquad
(c) If for some specific A, \mathbf{b}, where A is 4×5 and $\mathbf{b} \in \mathbb{R}^{4}$, we know $A \mathbf{x}=\mathbf{b}$ has a 2-dimensional plane of solutions, then the rank of A must be (list all possibilities) \qquad
(d) If for some specific A, where A is 4×5 we know $A \mathbf{x}=\mathbf{b}$ has a solution for every \mathbf{b}, then the rank of A must be (list all possibilities) \qquad
(e) If Q is an orthogonal matrix, then its determinant can only be \qquad . (Hint: What is $Q^{T} Q$?)
(f) Using the 'big formula' to find the determinant of a 7×7 matrix would requiring adding (or subtracting) \qquad terms, each of which is the product of \qquad numbers. For such a matrix, it would be much easier to compute the determinant by \qquad
(g) Using Cramer's rule to solve $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}=\binom{e}{f}$ gives $x=$
(h) A 4×4 matrix with eigenvalues $1,3,3,3$ could have as few as \qquad eigenvectors. But it must have 4 orthogonal eigenvectors if A is \qquad
(i) If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ in \mathbb{R}^{3} form three edges of a parallelopiped, then its volume can be computed as \qquad
(j) A matrix that rotates vectors in \mathbb{R}^{2} about the origin by an angle of θ counterclockwise is $R_{\theta}=$
(k) If the SVD of a matrix A is

$$
U \Sigma V^{T}=\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{cc}
10 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
2 / \sqrt{5} & 1 / \sqrt{5} \\
1 / \sqrt{5} & -2 / \sqrt{5}
\end{array}\right)
$$

then the rank of A is \qquad and the pseudoinverse A^{+}is (you may leave your answer as a product):
(l) If A has eignevector \mathbf{v} with eigenvalue λ, then $M A M^{-1}$ will have eigenvector \qquad with eigenvalue \qquad _.

