Homework \#9

Due Saturday 26 March, 2022 at 11:59pm. \leftarrow REVISED AGAIN!

Submit as a single PDF via Gradescope; see the Canvas page canvas.alaska.edu/courses/7017
Textbook Problems from Strang, Intro Linear Algebra, 5th ed. will be graded for completion. Answers/solutions to these Problems are linked at
bueler.github.io/math314/resources.html
The \mathbf{P} Problems will be graded for correctness. When grading these Problems, I will expect you to write explanations using complete sentences!

Put these Textbook Problems first on your PDF, in this order.
from Problem Set 4.2, pages 213-217: \# 1, 3, 8, 13, 16, 17, 21, 22
from Problem Set 4.3, pages 228-231: \# 1, 2, 3, 4, 8, 9

Put these \boldsymbol{P} Problems next on your $P D F$, in this order.
P43. For each part: i) Draw the projection \boldsymbol{p} of \boldsymbol{b} onto \boldsymbol{a}. ii) Compute it as $\boldsymbol{p}=\hat{x} \boldsymbol{a}$, where $\hat{x}=\frac{\boldsymbol{a}^{\top} \boldsymbol{b}}{\boldsymbol{a}^{\top} \boldsymbol{a}}$. $i i i$) Compute the projection matrix $P=\frac{\boldsymbol{a} \boldsymbol{a}^{\top}}{\boldsymbol{a}^{\top} \boldsymbol{a}}$, and then $\boldsymbol{p}=P \boldsymbol{b}$.
(a) $\boldsymbol{b}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\boldsymbol{a}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(b) $\boldsymbol{b}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\boldsymbol{a}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(c) $\boldsymbol{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\boldsymbol{a}=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$
(For your drawing, just pick a generic θ.)

P44. For each part: i) Form and solve the normal equations $A^{\top} A \hat{\boldsymbol{x}}=A^{\top}$ b. ii) Compute the projection matrix $P=A\left(A^{\top} A\right)^{-1} A^{\top}$. (You can use technology for the inverse.) iii) Check that $P^{2}=P$ and $P^{\top}=P$. iv) Compute $\boldsymbol{p}=P \boldsymbol{b}$, and check it matches $A \hat{\boldsymbol{x}}$ from the solution to the normal equations.
(a) $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right]$ and $\boldsymbol{b}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$
(b) $\quad A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 0 & 1\end{array}\right]$ and $\boldsymbol{b}=\left[\begin{array}{l}2 \\ 8 \\ 6\end{array}\right]$

P45. An overdetermined system you cannot solve (4 equations in 2 unknowns):

$$
\begin{aligned}
x_{1}+x_{2} & =1 \\
x_{1} & =0 \\
2 x_{1}-x_{2} & =2 \\
3 x_{1}+4 x_{2} & =-1
\end{aligned}
$$

(a) Each equation is a line in the x_{1}, x_{2} plane. Plot all 4 lines in one plot. They do not meet in a single point. (Feel free to use technology for this plot. Your plot box should at least include all the places where pairs of lines intersect.)
(b) Write down the normal equations $A^{\top} A \boldsymbol{x}=A^{\top} \boldsymbol{b}$ for the above system " $A \boldsymbol{x}=\boldsymbol{b}^{\prime}$.
(c) Solve the normal equations. (Use technology as desired.) Add the solution point to your plot in part (a).

P46. (a) Consider the same A, \boldsymbol{b} as in P45. Write out and simplify

$$
E\left(x_{1}, x_{2}\right)=\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}=(A \boldsymbol{x}-\boldsymbol{b})^{\top}(A \boldsymbol{x}-\boldsymbol{b}) .
$$

(Hint. This simplifies to a function which is quadratic in the two variables x_{1}, x_{2}.)
(b) Compute and simplify the partial derivatives of E.
(c) Solve the linear system of two equations in two unknowns x_{1}, x_{2} :

$$
\begin{aligned}
& \frac{\partial E}{\partial x_{1}}=0 \\
& \frac{\partial E}{\partial x_{2}}=0
\end{aligned}
$$

(Hint. The solution is the same as in $\mathbf{P 4 5}$ (c). The system is essentially the same.)

