Math 314 Linear Algebra (Bueler)

Spring 2022

Homework #9

Due Saturday 26 March, 2022 at 11:59pm. \leftarrow *REVISED AGAIN*!

Put these Textbook Problems first on your PDF, in this order.

from Problem Set 4.2, pages 213–217: # 1, 3, 8, 13, 16, 17, 21, 22

from Problem Set 4.3, pages 228–231: #1, 2, 3, 4, 8, 9

Put these **P** Problems next on your PDF, in this order.

P43.	For each part: <i>i</i>) Draw the projection	p of b onto a . <i>ii</i>) Compute it as $p = \hat{x}a$,
where $\hat{x} = \frac{a^{\top}b}{a^{\top}a}$. <i>iii)</i> Compute the projection matrix $P = \frac{aa^{\top}}{a^{\top}a}$, and then $p = Pb$.		
(a)	$oldsymbol{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $oldsymbol{a} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	
(b)	$oldsymbol{b} = egin{bmatrix} 1 \ -1 \end{bmatrix}$ and $oldsymbol{a} = egin{bmatrix} 1 \ 1 \end{bmatrix}$	
(c)	$oldsymbol{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $oldsymbol{a} = \begin{bmatrix} \cos heta \\ \sin heta \end{bmatrix}$	(For your drawing, just pick a generic θ .)

P44. For each part: *i*) Form and solve the normal equations $A^{\top}A\hat{x} = A^{\top}b$. *ii*) Compute the projection matrix $P = A(A^{\top}A)^{-1}A^{\top}$. (*You can use technology for the inverse.*) *iii*) Check that $P^2 = P$ and $P^{\top} = P$. *iv*) Compute p = Pb, and check it matches $A\hat{x}$ from the solution to the normal equations.

(a)
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 and $b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $\boldsymbol{b} = \begin{bmatrix} 2 \\ 8 \\ 6 \end{bmatrix}$

P45. An overdetermined system you cannot solve (4 equations in 2 unknowns):

 $x_1 + x_2 = 1$ $x_1 = 0$ $2x_1 - x_2 = 2$ $3x_1 + 4x_2 = -1$

(a) Each equation is a line in the x_1, x_2 plane. Plot all 4 lines in one plot. They do not meet in a single point. (*Feel free to use technology for this plot. Your plot box should at least include all the places where pairs of lines intersect.*)

(b) Write down the normal equations $A^{\top}Ax = A^{\top}b$ for the above system "Ax = b".

(c) Solve the normal equations. (*Use technology as desired.*) Add the solution point to your plot in part (a).

P46. (a) Consider the same *A*, *b* as in P45. Write out and simplify

$$E(x_1, x_2) = \|A\boldsymbol{x} - \boldsymbol{b}\|^2 = (A\boldsymbol{x} - \boldsymbol{b})^\top (A\boldsymbol{x} - \boldsymbol{b}).$$

(Hint. This simplifies to a function which is quadratic in the two variables x_1, x_2 .)

- (b) Compute and simplify the partial derivatives of *E*.
- (c) Solve the linear system of two equations in two unknowns x_1, x_2 :

$$\frac{\partial E}{\partial x_1} = 0$$
$$\frac{\partial E}{\partial x_2} = 0$$

(Hint. The solution is the same as in P45 (c). The system is essentially the same.)

2