Homework \#8 (revised P42)

Due Monday 21 March, 2022 at 11:59pm.
Submit as a single PDF via Gradescope, linked from the Canvas page canvas.alaska.edu/courses/7017
Textbook Problems from Strang, Intro Linear Algebra, 5th ed. will be graded for completion. Answers/solutions to these Problems are linked at bueler.github.io/math314/resources.html
The \mathbf{P} Problems will be graded for correctness. When grading these Problems, I will expect you to write explanations using complete sentences!

Put these Textbook Problems first on your PDF, in this order.
from Problem Set 3.5, pages 189-192: \# 1, 3, 4, 6, 7, 11, 13, 23
from Problem Set 4.1, pages 201-204: $\quad \# 2,4,5,6,10,11,12,13,20$

Put these \boldsymbol{P} Problems next on your PDF, in this order.
P36. I have a 3×5 matrix and I compute its rref:

$$
A=\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 2 & 4 & 3 & 2 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \quad \rightarrow \quad R=\left[\begin{array}{ccccc}
0 & 1 & 2 & 0 & -2 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Find a basis for each of the four subspaces associated to A :
row space $C\left(A^{\top}\right), \quad$ column space $C(A), \quad$ null space $N(A), \quad$ left nullspace $N\left(A^{\top}\right)$
P37. Suppose I have factored A as $L U$:

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 6 \\
0 & 0 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Find a basis for each of the four subspaces associated to A :
row space $C\left(A^{\top}\right), \quad$ column space $C(A), \quad$ null space $N(A), \quad$ left nullspace $N\left(A^{\top}\right)$

P38. Let \boldsymbol{V} be the subspace of \mathbb{R}^{3} spanned by $(1,-1,0)$ and $(0,2,1)$.
(a) Find a matrix A that has V as its row space.
(b) Find a matrix B that has \boldsymbol{V} as its null space.
(c) Multiply $A B^{\top}$. Multiply $B A^{\top}$. Why do these come out so simple?

P39. Let I be the 3×3 identity matrix and O be the 3×2 zero matrix. For each of these matrices, find the dimensions of the four subspaces:

$$
A=[O], \quad B=\left[\begin{array}{ll}
I & O
\end{array}\right], \quad C=\left[\begin{array}{cc}
I & I \\
O^{\top} & O^{\top}
\end{array}\right]
$$

P40. (a) Prove that every \boldsymbol{x} in $N(A)$ is perpendicular to every $A^{\top} \boldsymbol{y}$ in the row space of A (i.e. in $\left.C\left(A^{\top}\right)\right)$. Hint. Start with $A \boldsymbol{x}=\mathbf{0}$. Now compute a dot product.
(b) Prove that every \boldsymbol{y} in $N\left(A^{\top}\right)$ is perpendicular to every $A \boldsymbol{x}$ in the column space of A (i.e. in $C(A)$).

P41. This system of equations $A \boldsymbol{x}=\boldsymbol{b}$ has no solutions:

$$
\begin{aligned}
2 x+3 y+4 z & =9 \\
4 x+3 y+2 z & =9 \\
2 x-2 z & =1
\end{aligned}
$$

Find numbers c_{1}, c_{2}, c_{3} to multiply the equations so that they add to $0=1$. (Hint. Do row operations, and keep track of them.) You have found a vector \boldsymbol{y} in which subspace? Check its dot product: $\boldsymbol{y}^{\boldsymbol{\top}} \boldsymbol{b}=1$.

P42. Suppose \boldsymbol{S} is the subspace spanned by the vectors (1,2,2,3) and (1, 1, 1, 1). Find two vectors that span the orthogonal complement of \boldsymbol{S}. This is the same as solving $A \boldsymbol{x}=\mathbf{0}$ for which A ?

