Homework #8 (revised P42)

Due Monday 21 March, 2022 at 11:59pm.

Submit as a single PDF via Gradescope, linked from the Canvas page canvas.alaska.edu/courses/7017 Textbook Problems from Strang, Intro Linear Algebra, 5th ed. will be graded for completion. Answers/solutions to these Problems are linked at bueler.github.io/math314/resources.html The P Problems will be graded for correctness. When grading these Problems, I will expect you to write explanations using complete sentences!

Put these Textbook Problems first on your PDF, in this order.

from Problem Set 3.5, pages 189–192: # 1, 3, 4, 6, 7, 11, 13, 23 from Problem Set 4.1, pages 201–204: # 2, 4, 5, 6, 10, 11, 12, 13, 20

Put these **P** Problems next on your PDF, in this order.

P36. I have a 3 × 5 matrix and I compute its rref:

	0	1	2	3	4			0	1	2	0	-2
A =	0	2	4	3	2	\rightarrow	R =	0	0	0	1	2
	0	0	0	1	2			0	0	0	0	0

Find a basis for each of the four subspaces associated to *A*:

row space $C(A^{\top})$, column space C(A), null space N(A), left nullspace $N(A^{\top})$

P37. Suppose I have factored *A* as *LU*:

 $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 6 \\ 0 & 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$

Find a basis for each of the four subspaces associated to *A*:

row space $C(A^{\top})$, column space C(A), null space N(A), left nullspace $N(A^{\top})$

P38. Let V be the subspace of \mathbb{R}^3 spanned by (1, -1, 0) and (0, 2, 1).

(a) Find a matrix *A* that has *V* as its row space.

- (b) Find a matrix *B* that has *V* as its null space.
- (c) Multiply AB^{\top} . Multiply BA^{\top} . Why do these come out so simple?

P39. Let *I* be the 3×3 identity matrix and *O* be the 3×2 zero matrix. For each of these matrices, find the dimensions of the four subspaces:

$$A = \begin{bmatrix} O \end{bmatrix}, \quad B = \begin{bmatrix} I & O \end{bmatrix}, \quad C = \begin{bmatrix} I & I \\ O^{\top} & O^{\top} \end{bmatrix}$$

P40. (a) Prove that every \boldsymbol{x} in N(A) is perpendicular to every $A^{\top}\boldsymbol{y}$ in the row space of A (i.e. in $C(A^{\top})$). *Hint. Start with* $A\boldsymbol{x} = \boldsymbol{0}$. *Now compute a dot product.*

(b) Prove that every \boldsymbol{y} in $N(A^{\top})$ is perpendicular to every $A\boldsymbol{x}$ in the column space of A (i.e. in C(A)).

P41. This system of equations Ax = b has no solutions:

$$2x + 3y + 4z = 9$$
$$4x + 3y + 2z = 9$$
$$2x - 2z = 1$$

Find numbers c_1, c_2, c_3 to multiply the equations so that they add to 0 = 1. (*Hint. Do row operations, and keep track of them.*) You have found a vector \boldsymbol{y} in which subspace? Check its dot product: $\boldsymbol{y}^{\mathsf{T}}\boldsymbol{b} = 1$.

P42. Suppose *S* is the subspace spanned by the vectors (1, 2, 2, 3) and (1, 1, 1, 1). Find two vectors that span the orthogonal complement of *S*. This is the same as solving Ax = 0 for which *A*?