Homework \#6

Due Monday 28 February, 2022 at 11:59pm. \longleftarrow Updated!
Submit as a single PDF via Gradescope, linked from the Canvas page canvas.alaska.edu/courses/7017
Textbook Problems from Strang, Intro Linear Algebra, 5th ed. will be graded for completion. Answers/solutions are linked at
bueler.github.io/math314/resources.html
P Problems will be graded for correctness. When grading these, I expect you to write explanations using complete sentences!

Put these Textbook Problems first on your PDF, in this order.

from Problem Set 3.1, pages 130-133: \# 4, 5, 12, 14, 17, 20, 23, 27
from Problem Set 3.2, pages 141-147: \# 1, 2, 7, 10, 15, 17, 22

Put these \boldsymbol{P} Problems next on your PDF, in this order.
P21. If no zero pivots appear along the way, elimination can factor a symmetric matrix S into $S=L D L^{\top}$ where L is lower triangular, with ones on the diagonal as usual, and D is a diagonal matrix. The calculation proceeds essentially the same as an LU factorization, but once we see U we can, because of symmetry, "pull out" the diagonal entries from U, and the remaining upper triangular matrix will be the transpose of the L factor. Specifically, the diagonal matrix D is formed from the pivots.

Do this factorization on the following matrices:

$$
S=\left[\begin{array}{ll}
1 & 3 \\
3 & 2
\end{array}\right], \quad S=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
$$

Check the factorization $S=L D L^{\top}$ by multiplying back!
P22. (a) How many entries of a symmetric 5×5 matrix S can be chosen independently?
(b) Large, symmetric matrices, of size $m \times m$, require about half the storage (memory) on a computer as general matrices of the same size if the entries are saved in a careful scheme. Explain.
(c) A skew-symmetric matrix A is one for which $A^{\top}=-A$. How many entries of a skew-symmetric 5×5 matrix A can be chosen independently?

P23. (a) Assume A is $m \times n$. Explain why the product $A^{\top} A$ is always defined; what size is it? Then explain why

$$
\left(A^{\top} A\right)_{i j}=\sum_{k=1}^{m} a_{k i} a_{k j}
$$

(Hint. Start from the general formula for $(A B)_{i j}$, but then specialize to the current case.)
(b) Show that if A is not a zero matrix then $A^{\top} A$ is also not a zero matrix.
(c) Find a nonzero matrix A so that $A^{2}=0$. Then calculate $A^{\top} A$ and confirm it is not zero.

P24. Which of the following subsets of \boldsymbol{R}^{3} are actually subspaces? Explain.
(a) The plane of vectors $\left(b_{1}, b_{2}, b_{3}\right)$ with $b_{1}=b_{3}$.
(b) The plane of vectors with $b_{1}=1$.
(c) The vectors with $b_{1} b_{2} b_{3}=0$.
(d) All linear combinations of $\boldsymbol{v}=(3,1,0)$ and $\boldsymbol{w}=(2,2,2)$.
(e) All vectors which satisfy $b_{1}+b_{2}+b_{3}=0$.
(f) All vectors with $b_{1} \geq b_{2} \geq b_{3}$.

P25. In each part, describe the smallest subspace of the 2×2 matrix space M which contains the given matrices. (Hint. Answer by giving a parameterized general form for a matrix in the subspace.)
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

P26. Is it possible to construct a matrix A whose column space contains $(1,1,0)$ and $(0,1,1)$, and whose nullspace contains $(1,0,1)$ and $(0,0,1)$. Explain your answer. (Hint. What size is A ? How many pivots and how many free variables?)

P27. If A is 4×4 and invertible, describe the nullspace of the 4×8 matrix $B=[A A]$.

