Homework \#4

Due Monday 7 February, 2022 at 11:59pm.
Submit as a single PDF via Gradescope, linked from the Canvas page canvas.alaska.edu/courses/7017
Textbook Problems from Strang, Intro Linear Algebra, 5th ed. will be graded for completion. Answers/solutions are linked at bueler.github.io/math314/resources.html
P Problems will be graded for correctness.

Put these Textbook Problems first on your PDF, in this order.
from Problem Set 2.4, pages 77-82: \# 1, 2, 5, 15, 23, 32
from Problem Set 2.5, pages 92-96: \# 6, 11, 12, 16, 18, 25, 29, 34

Put these \boldsymbol{P} Problems next on your $P D F$, in this order.
P17. Assume A and B are square matrices of the same size. Which of the following matrices are guaranteed to equal $(A+B)^{2}$?

$$
A^{2}+B^{2}, \quad A^{2}+2 A B+B^{2}, \quad A(A+B)+B(A+B), \quad A^{2}+A B+B A+B^{2}
$$

Explain why if so, and provide a counter-example if not. (Hint: When not equal, either 1×1 or 2×2 counterexamples will suffice.)

P18. If A is $m \times n$, how many multiplications are needed when
(a) A multiplies a column vector x of size n ?
(b) $\quad A$ multiplies an $n \times k$ matrix B ?
(c) $\quad A$ multiplies itself to produce A^{2}, in the case where $m=n$?

P19. Use the Gauss-Jordan method to calculate A^{-1} when

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

(That is, eliminate above and below the pivots as you convert $\left[\begin{array}{ll}A & I\end{array}\right]$ to $\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$, and show your steps.) Check your result using Matlab's inv () command.

P20. There are sixteen 2×2 matrices whose entries are 0 's and 1's only. How many of the 16 are invertible?

