## Homework \#3

Due Monday 31 January, 2022 at 11:59pm.
Submit as a single PDF by using Gradescope, via canvas.alaska.edu/courses/7017
Problems from the textbook (Strang, Intro Linear Algebra, 5th ed. 2016) will be graded for completion, while the " $\mathbf{P}$ " Problems will be graded for correctness. Answers/solutions to Textbook Problems are linked at
bueler.github.io/math314/resources.html

Put these Textbook Problems first on your PDF, in this order.
from Problem Set 2.2, pages 53-57: \# 1, 4, 6, 9, 11, 12, 14, 21, 27
from Problem Set 2.3, pages 66-69: \# 1, 3, 4, 12, 19, 24, 28, 29

Put these "P" Problems next on your PDF, in this order.
P11. (a) Complete the right side to get a system which has no solutions:

$$
\begin{aligned}
& 8 x-4 y=14 \\
& -2 x+y=\square
\end{aligned}
$$

(There are many correct answers.)
(b) Complete the right side to get a system which has infinitely-many solutions. (There is only one correct answer.)
(c) Write down two different solutions to the system in part (b).

P12. Find three possible original problems (linear systems) so that elimination leads to $x-y=1$ and $2 y=-3$.

P13. Suppose we start with some 4 by 4 matrix $A$.
(a) $E_{21}$ subtracts row 1 from row 2 and then $P_{24}$ exchanges rows 2 and 4 . What matrix $M=P_{24} E_{21}$ does both steps at once?
(b) $\quad P_{24}$ exchanges rows 2 and 4 and then $E_{41}$ subtracts row 1 from row 4 . What matrix $N=E_{41} P_{24}$ does both steps at once?
(c) Explain why $M=N$.

P14. Elimination on this 4 by 4 matrix $Z$ will need matrices $E_{21}, E_{32}$, and $E_{43}$. What are these matrices?

$$
Z=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
1 & 2 & -1 & 0 \\
0 & 1 & 2 & -1 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

P15. Consider the matrices

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & b & 1
\end{array}\right]
$$

(a) Compute $A B$ and $B A$. Are they the same?
(b) Give formulas for $A^{n}$ and $B^{n}$ if $n \geq 1$ is an integer. (Hint. Compute $A^{2}, A^{3}$ and $B^{2}, B^{3}$. What is the pattern?)

P16. Consider this system $A x=\boldsymbol{b}$ :

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 1 \\
3 & 7 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right]
$$

(a) Apply elimination to the augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$. How do you know this system has no solution?
(b) Change the last number 6 so that the new system does have a solution. Find a solution of the new system.

