Homework #2

Due Monday 24 January, 2022 at 11:59pm.

Submit as a single PDF by using Gradescope, via the course Canvas site canvas.alaska.edu/courses/7017

Problems from the textbook (Strang, *Intro Linear Algebra*, 5th ed. 2016) will be graded for completion, while the "**P**" Problems will be graded for correctness. Answers/solutions to Textbook Problems are linked at bueler.github.io/math314/resources.html

Put these Textbook Problems first on your PDF, in this order.

from Problem Set 1.3, pages 29–30: #1, 3, 8, 14

from Problem Set 2.1, pages 41–45: # 1, 4, 8, 13, 17, 18, 22, 23, 26, 34

Put these "P" Problems next on your PDF, in this order.

P7. (a) Solve this equation Sy = b for y. Note S is a sum matrix.

[1	0	0	0	$\begin{bmatrix} y_1 \end{bmatrix}$	$\begin{bmatrix} y_1 \end{bmatrix}$		[3]	
1	1	0	0	y_2	y_2	=	4	
1	1	1	0	y_3	$ y_3 $		8	·
1	1	1	1	y_4	y_4		9	

(b) Solve this equation My = b for y. Note M is a *difference matrix*.

Γ	1	0	0	0	$\begin{bmatrix} y_1 \end{bmatrix}$		$\lceil 3 \rceil$	
	-1	1	0	0	y_2		1	
	0	-1	1	0	y_3	=	4	•
L	0	0	-1	1	$\lfloor y_4 \rfloor$		1	

(c) If I take any vector u and first multiply it by M from part (b) to get Mu = v, and then I multiply v by S from part (a) to get Sv = w, what is w?

P8. Here are three vectors:

$$\boldsymbol{v}_1 = \begin{bmatrix} 2\\3\\4 \end{bmatrix}, \quad \boldsymbol{v}_2 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \quad \boldsymbol{v}_3 = \begin{bmatrix} 5\\6\\7 \end{bmatrix}$$

One may create the zero vector from the linear combination $x_1v_1 + x_2v_2 + x_3v_3$ by choosing $x_1 = x_2 = x_3 = 0$, but that is obvious and boring. Instead, choose $x_1 = 1$ and find x_2 and x_3 so that the linear combination is again the zero vector. Does this show that

P9. (a) Compute this matrix-vector product by using dot products of the rows with the column vector:

•

$$\begin{bmatrix} 3 & -1 & 0 & 0 \\ -1 & 3 & -1 & 0 \\ 0 & -1 & 3 & -1 \\ 0 & 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 1 \\ 2 \end{bmatrix}.$$

(b) Compute the same matrix-vector product by a linear combination of the columns of the matrix.

P10. (a) What 2 by 2 matrix *R* rotates every vector counter-clockwise by 90°? (Note $R \text{ times } \begin{bmatrix} x \\ y \end{bmatrix}$ is $\begin{bmatrix} y \\ -x \end{bmatrix}$.)

(b) What 2 by 2 matrix S rotates every vector by 180° ?

(c) Show that for any vector \boldsymbol{u} , $R(R\boldsymbol{u}) = S\boldsymbol{u}$.