Homework \#2

Due Monday 24 January, 2022 at 11:59pm.
Submit as a single PDF by using Gradescope, via the course Canvas site canvas.alaska.edu/courses/7017
Problems from the textbook (Strang, Intro Linear Algebra, 5th ed. 2016) will be graded for completion, while the " \mathbf{P} " Problems will be graded for correctness. Answers/solutions to Textbook Problems are linked at
bueler.github.io/math314/resources.html

Put these Textbook Problems first on your PDF, in this order.
from Problem Set 1.3, pages 29-30: \# 1, 3, 8, 14
from Problem Set 2.1, pages 41-45: \# 1, 4, 8, 13, 17, 18, 22, 23, 26, 34

Put these "P" Problems next on your PDF, in this order.
P7. (a) Solve this equation $S \boldsymbol{y}=\boldsymbol{b}$ for \boldsymbol{y}. Note S is a sum matrix.

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
8 \\
9
\end{array}\right] .
$$

(b) Solve this equation $M \boldsymbol{y}=\boldsymbol{b}$ for \boldsymbol{y}. Note M is a difference matrix.

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
4 \\
1
\end{array}\right] .
$$

(c) If I take any vector \boldsymbol{u} and first multiply it by M from part (b) to get $M \boldsymbol{u}=\boldsymbol{v}$, and then I multiply \boldsymbol{v} by S from part (a) to get $S \boldsymbol{v}=\boldsymbol{w}$, what is \boldsymbol{w} ?

P8. Here are three vectors:

$$
\boldsymbol{v}_{1}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right], \quad \boldsymbol{v}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \quad \boldsymbol{v}_{3}=\left[\begin{array}{l}
5 \\
6 \\
7
\end{array}\right] .
$$

One may create the zero vector from the linear combination $x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+x_{3} \boldsymbol{v}_{3}$ by choosing $x_{1}=x_{2}=x_{3}=0$, but that is obvious and boring. Instead, choose $x_{1}=1$ and find x_{2} and x_{3} so that the linear combination is again the zero vector. Does this show that
the three vectors are independent or dependent? The three vectors lie in a \qquad . (Note that the matrix V formed from these vectors is not invertible.)

P9. (a) Compute this matrix-vector product by using dot products of the rows with the column vector:

$$
\left[\begin{array}{cccc}
3 & -1 & 0 & 0 \\
-1 & 3 & -1 & 0 \\
0 & -1 & 3 & -1 \\
0 & 0 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
3 \\
1 \\
2
\end{array}\right]
$$

(b) Compute the same matrix-vector product by a linear combination of the columns of the matrix.

P10. (a) What 2 by 2 matrix R rotates every vector counter-clockwise by 90° ? (Note R times $\left[\begin{array}{l}x \\ y\end{array}\right]$ is $\left[\begin{array}{c}y \\ -x\end{array}\right]$.)
(b) What 2 by 2 matrix S rotates every vector by 180° ?
(c) Show that for any vector $\boldsymbol{u}, R(R \boldsymbol{u})=S \boldsymbol{u}$.

