Homework \#12

Due Monday 25 April, 2022 at 11:59pm.

Submit as a single PDF via Gradescope; see the Canvas page
canvas.alaska.edu/courses/7017
Textbook Problems from Strang, Intro Linear Algebra, 5th ed. will be graded for completion. Answers/solutions to these Problems are linked at bueler.github.io/math314/resources.html
The \mathbf{P} Problems will be graded for correctness. When grading these Problems, I will expect you to write explanations using complete sentences!

Put these Textbook Problems first on your PDF, in this order.
from Problem Set 6.4, pages 344-348: \# 4, 5, 8
from Problem Set 8.1, pages 406-409: \# 1,3,13, 17, 20, 24 (Hint. Append columns.)
from Problem Set 8.2, pages 417-419: \# 1, 4, 5, 10, 11, 14, 27

Put these \boldsymbol{P} Problems next on your $P D F$, in this order.
P57. (a) By hand calculation, find an orthogonal matrix Q which diagonalizes

$$
S=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & -2 \\
2 & -2 & 0
\end{array}\right]
$$

(Hints. Recall that if X is an invertible matrix of eigenvectors of A then X diagonalizes A in the sense that $A X=X \Lambda$ or $A=X \Lambda X^{-1}$, where Λ is diagonal. Recall that the columns of an orthogonal matrix are orthonormal vectors: $Q^{\top} Q=I$. If $X=Q$ is orthogonal then $A=X \Lambda X^{-1}=Q \Lambda Q^{\top}$.)
(b) Check your calculation using Matlab's eig command
$[Q, D]=\operatorname{eig}(S)$
Explain any differences between your Q and the computed Q from Matlab.
P58. (a) What matrix A transforms $(1,0)$ and $(0,1)$ to (r, s) and (t, u) ?
(b) What matrix B transforms (a, b) and (c, d) to $(1,0)$ and $(0,1)$?
(c) What condition on a, b, c, d will make part (b) impossible?
(d) When $r=a, s=b, t=c$, and $u=d$ then A and B are matrix inverses. Confirm this.

P59. Consider the symmetric matrices

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], \quad B=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

(a) Which of these classes of matrices do A and B belong to?:

INVERTIBLE, ORTHOGONAL, PROJECTION, PERMUTATION, DIAGONALIZABLE
Explain, or show work which supports your answers.
(b) Which of these factorizations are possible for A and B ?:

$$
L U, \quad X \Lambda X^{-1}, \quad Q \Lambda Q^{\top}
$$

(As usual, L is lower triangular with ones on diagonal, U is upper triangular, X is invertible, Λ is diagonal, and Q is orthogonal.) Explain, or show work which supports your answers.
(c) By hand calculation, find Q orthogonal and Λ diagonal so that $B=Q \Lambda Q^{\top}$. (Hint. B has a repeated eigenvalue $\lambda=0$, and you will need to find two orthogonal and normalized eigenvectors for this λ. Check your work in Matlab.)

P60. In this problem we consider transformations from $\boldsymbol{V}=\mathbb{R}^{2}$ to $\boldsymbol{W}=\mathbb{R}^{2}$.
(a) For each of these transformations, is it linear? (Show it is, or give a counterexample.) In either case, give a simplified formula for $T(T(\boldsymbol{v}))$:

- $T(\boldsymbol{v})=-\boldsymbol{v}$
- $T(\boldsymbol{v})=\boldsymbol{v}+(1,1)$
- $T(\boldsymbol{v})=\left(\right.$ do 90° rotation on $\left.\boldsymbol{v}\right)=\left(-v_{2}, v_{1}\right)$
- $T(\boldsymbol{v})=($ projection $)=\frac{1}{2}\left(v_{1}+v_{2}, v_{1}+v_{2}\right)$
(b) Show that if T is linear, i.e. $T(a \boldsymbol{v}+b \boldsymbol{w})=a T(\boldsymbol{v})+b T(\boldsymbol{w})$, then $T(T(\boldsymbol{v}))$ is also linear.
(Note that it is common in mathematics to write " T^{2} " for the composition $T(T(\cdot)$) of a transformation T with itself, even if T is not linear, and/or T is not already represented by a matrix.)

P61. (a) Consider the vector space \boldsymbol{M} of 2 by 2 matrices. Show that the transpose transformation T, on \boldsymbol{M}, is linear: $T(A)=A^{\top}$. (Hint. Not much to do! Fits on one line.)
(b) Try to find a 2 by 2 matrix B so that $T(A)=B A$. Show that no such matrix B exists! (Hint. Show that $B A=A^{\top}$ being true for all matrices A is impossible.)
(c) If we rearrange the entries of a 2 by 2 matrix A into a column vector \boldsymbol{a} with four entries then we can do what is asked in (b). That is, show that there is a 4×4 matrix C so that $C \boldsymbol{a}$ is a column vector which is the rearrangement of A^{\top}.

