Homework \#11

Due Friday 15 April, 2022 at 11:59pm. \leftarrow REVISED

Submit as a single PDF via Gradescope; see the Canvas page
canvas.alaska.edu/courses/7017
Textbook Problems from Strang, Intro Linear Algebra, 5th ed. will be graded for completion. Answers/solutions to these Problems are linked at
bueler.github.io/math314/resources.html
The \mathbf{P} Problems will be graded for correctness. When grading these Problems, I will expect you to write explanations using complete sentences!

Put these Textbook Problems first on your PDF, in this order.

from Problem Set 6.1, pages 297-302: \# 1, 5, 8, 14, 16, 21, 24, 33
from Problem Set 6.2, pages 313-317: \# 1, 2, 4, 7, 15, 20

Put these \boldsymbol{P} Problems next on your $P D F$, in this order.
P52. (a) Compute the eigenvalues and eigenvectors of $A=\left[\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right]$.
(b) Find the eigenvalues and eigenvectors of the matrices the matrices $A+I$ and A^{-1}. Confirm that the eigenvectors are the same as those for A.
(c) Apply the functions $f(x)=x+1$ and $g(x)=1 / x$ to the eigenvalues of A, and confirm this gives the same eigenvalues computed in (b).
This illustrates a more general rule, that functions of a matrix, like $f(A)=A+I$ and $g(A)=$ A^{-1}, have eigenvalues which are computed by the same function, but on complex numbers.

P53. (a) Compute the eigenvalues of the matrices

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 2 & 0 \\
3 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right]
$$

(b) The matrix B is rank one. To consider this case, suppose $\boldsymbol{u}, \boldsymbol{v}$ are nonzero (column) vectors in \mathbb{R}^{n}. Let $C=\boldsymbol{u} \boldsymbol{v}^{\top}$. (Recall this is the general formula for a rank one matrix!) Show that $C \boldsymbol{u}=\lambda \boldsymbol{u}$ and find λ. Also show that if \boldsymbol{w} is any vector orthogonal to \boldsymbol{v} then $C \boldsymbol{w}=\mathbf{0}$. What can you conclude about the eigenvalues of rank one matrices?

P54. 2 by 2 rotation matrices have the form

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Using this form, find a non-identity matrix A with the property that $A^{3}=I$. Now compute the eigenvalues of A, and confirm that the eigenvalues are certain complex numbers λ, on the unit circle, which satisfy $\lambda^{3}=1$.

P55. Answer true or false; if true give an explanation and if false give a counterexample. Assume A is 3 by 3 .
(a) If the eigenvalues of A are $2,2,5$ then A is invertible.
(b) If the eigenvalues of A are $2,2,5$ then A is diagonalizable.

P56. The following four diagonalizable 2×2 matrices look rather similar to each other, for instance in terms of the sizes of the entries:

$$
A=\left[\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right], \quad B=\left[\begin{array}{cc}
3 & 2 \\
-5 & -3
\end{array}\right], \quad C=\left[\begin{array}{cc}
5 & 7 \\
-3 & -4
\end{array}\right], \quad D=\left[\begin{array}{cc}
5 & 6.9 \\
-3 & -4
\end{array}\right]
$$

However, their powers act in completely different ways. Looking at the eigenvalues will explain it.
(a) Compute the eigenvalues of the 4 matrices and put all 8 values on a single graph in the complex plane. (The eigenvalues of real matrices are generally complex!) Show the unit circle on your graph, and then show the eigenvalues as 8 clearly-labeled dots in the complex plane; consider using a color for each matrix. Draw the picture well enough so that you can tell where all the eigenvalues are relative to the unit circle.
(b) Recall that if M is a square and diagonalizable matrix with eigenvalues λ_{i} and eigenvectors \boldsymbol{x}_{i}, so that $M=X \Lambda X^{-1}$ is the diagonalization, then

$$
M^{k}=X \Lambda^{k} X^{-1}
$$

(Remember the calculation: $M^{2}=X \Lambda X^{-1} X \Lambda X^{-1}=X \Lambda^{2} X^{-1}$.) That is, powers of A can be computed by putting the power on the diagonal matrix Λ.

Based on where the eigenvalues in part (a) are, relative to the unit circle, match A, B, C, D to these descriptions:

1. $M^{100}=I$
2. $M^{100}=-M$
3. M^{100} has tiny entries
4. M^{100} has enormous entries
(Hint. A power of a complex number $x+i y=r e^{i \theta}$ which is on the unit circle just rotates around the circle. In general, $\left(r e^{i \theta}\right)^{k}=r^{k} e^{i k \theta}$.)
(c) Use Matlab to compute the 100th power of the 4 matrices to confirm your results.
