Homework \#10

Due Wednesday 6 April, 2022 at 11:59pm. UPDATED!

Submit as a single PDF via Gradescope; see the Canvas page
canvas.alaska.edu/courses/7017
Textbook Problems from Strang, Intro Linear Algebra, 5th ed. will be graded for completion. Answers/solutions to these Problems are linked at bueler.github.io/math314/resources.html
The \mathbf{P} Problems will be graded for correctness. When grading these Problems, I will expect you to write explanations using complete sentences!

Put these Textbook Problems first on your PDF, in this order.
from Problem Set 5.1, pages 253-256: \# 1, 3, 4, 7, 10, 18, 19
from Problem Set 5.2, pages 265-271: $\quad \# 2,6,7,12$

Put these \boldsymbol{P} Problems next on your $P D F$, in this order.
P47. This problem refers to ideas in section 4.4. Suppose

$$
Z=\left[\begin{array}{ccc}
1 / \sqrt{3} & 1 / \sqrt{6} & -1 / \sqrt{2} \\
1 / \sqrt{3} & -\sqrt{2} / \sqrt{3} & 0 \\
1 / \sqrt{3} & 1 / \sqrt{6} & 1 / \sqrt{2}
\end{array}\right]
$$

(a) Check, by computing dot products, that the columns of this matrix Z form an orthonormal basis.
(b) Check that $Z^{\top} Z=I$. This shows that Z is an orthogonal matrix.
(c) Explain briefly why calculations (a) and (b) are the same.

P48. (a) For each matrix A, do row reductions to reduce A to U, and then compute $\operatorname{det} A$ as the product of the pivots.

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right], \quad A=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
$$

(b) Compute $\operatorname{det} A$ for the matrices in part (a) by using the cofactor formula.

P49. Assume A and B are square matrices of the same size. Answer true or false; give a reason if true or a 2 by 2 example if false.
(a) If A is not invertible then $A B$ is not invertible.
(b) The determinant of A is always the product of its diagonal entries.
(c) The determinant of $A-B$ equals $\operatorname{det} A-\operatorname{det} B$.
(d) $A B$ and $B A$ have the same determinant.

P50. In both parts, assume A is an m by n matrix with $m \geq n$ and full column rank.
(a) Recall $P=A\left(A^{\top} A\right)^{-1} A^{\top}$ is the formula for the projection onto $C(A)$. Give an example of a 2 by 2 projection matrix P with determinant zero. (Hint. Any nontrivial example will work.)
(b) What is wrong with this proof that all projection matrices have $\operatorname{det} P=1$?:

$$
P=A\left(A^{\top} A\right)^{-1} A^{\top} \quad \text { so } \quad \operatorname{det} P=\operatorname{det}(A) \frac{1}{\operatorname{det}\left(A^{\top}\right) \operatorname{det}(A)} \operatorname{det}\left(A^{\top}\right)=1
$$

Are there any matrices A for which this proof is correct?
P51. (a) The matrix Z in $\mathbf{P 4 7}$ is orthogonal. Compute its determinant by using the big formula.
(b) If A is square and $A^{\top} A=I$ then we say A is an orthogonal matrix. Show that if A is any orthogonal matrix then $\operatorname{det} A= \pm 1$. (Hint. det of both sides.)

