Homework \#1

Due Wednesday 19 January, 2022 at 11:59pm.
Submit as a single PDF by using Gradescope, via the course Canvas site canvas.alaska.edu/courses/7017
Problems from the textbook (Strang, Intro Linear Algebra, 5th ed. 2016) will be graded for completion, while the " \mathbf{P} " Problems will be graded for correctness. Answers/solutions to Textbook Problems are linked at
bueler.github. io/math314/resources.html

Put these Textbook Problems first on your PDF, in this order.
from Problem Set 1.1, pages 8-10: \# 2, 6, 8, 11, 13, 22, 31
from Problem Set 1.2, pages 18-21: \# 1, 2, 3, 4, 6, 14, 21, 34

Put these "P" Problems next on your PDF, in this order.
P1. If $\mathbf{v}-\mathbf{w}=\left[\begin{array}{l}4 \\ 1\end{array}\right]$ and $\mathbf{v}+\mathbf{w}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$, compute and draw the vectors \mathbf{v} and \mathbf{w}.
P2. What linear combination $c\left[\begin{array}{l}4 \\ 1\end{array}\right]+d\left[\begin{array}{l}3 \\ 2\end{array}\right]$ produces $\left[\begin{array}{l}7 \\ 8\end{array}\right]$? Express this question as two equations for the coefficients c and d, and find c, d.

P3. Two opposite corners of a unit cube in 4 dimensions are ($0,0,0,0$) and ($1,1,1,1$). All corners have coordinates that are either 0 or 1 . How many corners are there? How many edges? How many "3D faces", which are themselves 3-dimensional cubes?

P4. Find nonzero vectors \mathbf{v} and \mathbf{w} which are perpendicular to $(-1,0,1)$ and to each other.

P5. True or false? If true give an explanation. If false give a counterexample:
(a) If \mathbf{u} is perpendicular to \mathbf{v} and \mathbf{w}, then \mathbf{u} is perpendicular to $2 \mathbf{v}-\mathbf{w}$.
(b) If \mathbf{u} and \mathbf{v} are perpendicular unit vectors then $\|\mathbf{u}+\mathbf{v}\|=\sqrt{2}$.
(c) If $\mathbf{u}=(-1,1,-1)$ is perpendicular to \mathbf{v} and \mathbf{w}, then \mathbf{v} is parallel to \mathbf{w}.

P6. Draw a parallelogram with sides \mathbf{v} and \mathbf{w}. Then show that the squared diagonal lengths $\|\mathbf{v}+\mathbf{w}\|^{2}+\|\mathbf{v}-\mathbf{w}\|^{2}$ add to the sum of the four squared side lengths, that is, $2\|\mathbf{v}\|^{2}+2\|\mathbf{w}\|^{2}$.

