Name:

Math 314 Linear Algebra (Bueler)

Monday, 28 March 2022

Midterm Exam 2

No book, notes, electronics, calculator, or internet access. 100 points possible. 65 minutes maximum.

1. Here is a matrix and its row-reduced echelon form:

	$\left\lceil -2 \right\rceil$	-4	1	2	-1]		[1	2	0	-1	1]
A =	-1	-2	2	1	-1	\rightarrow	$R = \begin{bmatrix} 0 \end{bmatrix}$	0	1	0	1
	0	0	3	0	3		_0	0	0	0	0

(a) (5 pts) What is the dimension of the row space $C(A^{\top})$? Provide a basis for $C(A^{\top})$. (Suggestion: Write your basis as $C(A^{\top}) = \text{span}\{\dots\}$ with particular vectors.)

 $\dim C(A^{\top}) = \boxed{}$

(b) $(5 \ pts)$ What is the **dimension** of the column space C(A)? **Provide a basis**.

 $\dim C(A) =$

(c) $(5 \ pts)$ What is the dimension of the null space N(A)? Provide a basis.

2. (10 pts) Suppose A is an m by n matrix. Show that the null space N(A) and the row space $C(A^{\top})$ are orthogonal, as subspaces of the vector space \mathbb{R}^n . (*Hint.* What is a good way to write a generic vector from $C(A^{\top})$?)

3. (6 pts) Suppose A is an m by n matrix. Show that $A^{\top}A$ is symmetric.

4. Consider the overdetermined linear system " $A\mathbf{v} = \mathbf{b}$ " with

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 1 & 2 \\ -1 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0 \\ 10 \\ -1 \\ -6 \end{bmatrix}.$$

(a) (10 pts) Write down the normal equations for this system.

(b) (6 pts) The solution of the normal equations is $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Is **b** in the column space C(A) for this system? How do you know?

4

5. (10 pts) Consider this linear system $A\mathbf{x} = \mathbf{b}$:

$$x_1 + 2x_2 + 2x_3 + x_4 = 9$$

$$3x_1 + 6x_2 + 4x_3 + x_4 = 17$$

Here is the row-reduced echelon form of the augmented matrix:

$$[A \mathbf{b}] \longrightarrow [R \mathbf{d}] = \begin{bmatrix} 1 & 2 & 0 & -1 & -1 \\ 0 & 0 & 1 & 1 & 5 \end{bmatrix}$$

What is the general solution of the system? Show your work.

6. (6 pts) Show that if A is any matrix and **x** is in N(A) then **x** is in $N(A^{\top}A)$.

7. $(8 \ pts)$ M_3 is the vector space of all 3 by 3 matrices. Give a basis for the subspace S of symmetric matrices.

8. (6 pts) Suppose A is any m by n matrix with full rank. Let $P = A(A^{\top}A)^{-1}A^{\top}$, the projection onto C(A). Show that $P^2 = P$.

9. $(8 \ pts)$ Suppose I is the 3 by 3 identity matrix and O is the 2 by 3 zero matrix. Consider the matrix

$$A = \begin{bmatrix} I & I \\ O & O \end{bmatrix},$$

which is 5 by 6. What are the dimensions of the four subspaces?

10. Consider the line through the origin in \mathbb{R}^2 along the vector $\mathbf{a} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Suppose $\mathbf{b} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$.

(a) (5 pts) Sketch **a**, the line along **a**, and the vector **b**, all on the same axes. (*Try to make your sketch to scale!*) Add $P\mathbf{b} = \hat{x}\mathbf{a}$, the projection of **b** onto the line.

(b) $(5 \ pts)$ Compute \hat{x} and $P\mathbf{b} = \hat{x}\mathbf{a}$.

(c) $(5 \ pts)$ Compute the projection matrix P.

Extra Credit. (3 *pts*) The complete solution to $A\mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ is $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Find A. Show your work.

BLANK SPACE