$\qquad$

## Midterm Exam 2

No book, notes, electronics, calculator, or internet access. 100 points possible. 65 minutes maximum.

1. Here is a matrix and its row-reduced echelon form:

$$
A=\left[\begin{array}{ccccc}
-2 & -4 & 1 & 2 & -1 \\
-1 & -2 & 2 & 1 & -1 \\
0 & 0 & 3 & 0 & 3
\end{array}\right] \quad \rightarrow \quad R=\left[\begin{array}{ccccc}
1 & 2 & 0 & -1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) (5 pts) What is the dimension of the row space $C\left(A^{\top}\right)$ ? Provide a basis for $C\left(A^{\top}\right)$. (Suggestion: Write your basis as $C\left(A^{\top}\right)=\operatorname{span}\{\ldots\}$ with particular vectors.)
$\operatorname{dim} C\left(A^{\top}\right)=\square$
(b) (5 pts) What is the dimension of the column space $C(A)$ ? Provide a basis.
$\operatorname{dim} C(A)=\square$
(c) (5 pts) What is the dimension of the null space $N(A)$ ? Provide a basis.
$\operatorname{dim} N(A)=\square$
2. (10 pts) Suppose $A$ is an $m$ by $n$ matrix. Show that the null space $N(A)$ and the row space $C\left(A^{\top}\right)$ are orthogonal, as subspaces of the vector space $\mathbb{R}^{n}$. (Hint. What is a good way to write a generic vector from $C\left(A^{\top}\right)$ ?)
3. ( 6 pts) Suppose $A$ is an $m$ by $n$ matrix. Show that $A^{\top} A$ is symmetric.
4. Consider the overdetermined linear system " $A \mathbf{v}=\mathbf{b}$ " with

$$
A=\left[\begin{array}{cc}
1 & 1 \\
0 & 2 \\
1 & 2 \\
-1 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
0 \\
10 \\
-1 \\
-6
\end{array}\right]
$$

(a) (10 pts) Write down the normal equations for this system.
(b) (6 pts) The solution of the normal equations is $\mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Is $\mathbf{b}$ in the column space $C(A)$ for this system? How do you know?
5. (10 pts) Consider this linear system $A \mathbf{x}=\mathbf{b}$ :

$$
\begin{aligned}
x_{1}+2 x_{2}+2 x_{3}+x_{4} & =9 \\
3 x_{1}+6 x_{2}+4 x_{3}+x_{4} & =17
\end{aligned}
$$

Here is the row-reduced echelon form of the augmented matrix:

$$
\left[\begin{array}{ll}
A & \mathbf{b}
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{ll}
R & \mathbf{d}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 2 & 0 & -1 & -1 \\
0 & 0 & 1 & 1 & 5
\end{array}\right]
$$

What is the general solution of the system? Show your work.
6. (6 pts) Show that if $A$ is any matrix and $\mathbf{x}$ is in $N(A)$ then $\mathbf{x}$ is in $N\left(A^{\top} A\right)$.
7. ( 8 pts ) $\quad M_{3}$ is the vector space of all 3 by 3 matrices. Give a basis for the subspace $S$ of symmetric matrices.
8. ( 6 pts) Suppose $A$ is any $m$ by $n$ matrix with full rank. Let $P=A\left(A^{\top} A\right)^{-1} A^{\top}$, the projection onto $C(A)$. Show that $P^{2}=P$.
9. ( 8 pts) Suppose $I$ is the 3 by 3 identity matrix and $O$ is the 2 by 3 zero matrix. Consider the matrix

$$
A=\left[\begin{array}{cc}
I & I \\
O & O
\end{array}\right]
$$

which is 5 by 6 . What are the dimensions of the four subspaces?

$$
\begin{array}{lr}
\operatorname{dim} C\left(A^{\top}\right)=\square & \operatorname{dim} C(A)=\square \\
\operatorname{dim} N(A)=\square & \operatorname{dim} N\left(A^{\top}\right)=\square
\end{array}
$$

10. Consider the line through the origin in $\mathbb{R}^{2}$ along the vector $\mathbf{a}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Suppose $\mathbf{b}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$.
(a) (5 pts) Sketch a, the line along a, and the vector $\mathbf{b}$, all on the same axes. (Try to make your sketch to scale!) Add $P \mathbf{b}=\hat{x} \mathbf{a}$, the projection of $\mathbf{b}$ onto the line.
(b) (5 pts) Compute $\hat{x}$ and $P \mathbf{b}=\hat{x} \mathbf{a}$.
(c) (5 pts) Compute the projection matrix $P$.

Extra Credit. (3 pts) The complete solution to $A \mathbf{x}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ is $\mathbf{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]+c\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Find $A$. Show your work.

