Midterm Exam 2
No book, notes, electronics, calculator, or internet access. 100 points possible. 65 minutes maximum.

1. Here is a matrix and its row-reduced echelon form:

$$
A=\left[\begin{array}{ccccc}
-2 & -4 & 1 & 2 & -1 \\
-1 & -2 & 2 & 1 & -1 \\
0 & 0 & 3 & 0 & 3
\end{array}\right] \quad \rightarrow \quad R=\left[\begin{array}{ccccc}
1 & 2 & 0 & -1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) (5 pts) What is the dimension of the row space $C\left(A^{\top}\right)$? Provide a basis for $C\left(A^{\top}\right)$. (Suggestion: Write your basis as $C\left(A^{\top}\right)=\operatorname{span}\{\ldots\}$ with particular vectors.)

$$
\operatorname{din}(A)=2 \quad C\left(A^{\top}\right)=\operatorname{spm}\left\{\left[\begin{array}{c}
1 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]\right\}
$$

(b) (5 pts) What is the dimension of the column space $C(A)$? Provide a basis.

$$
\quad C(A)=\operatorname{spm}\left\{\left[\begin{array}{c}
-2 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right\}
$$

(c) (5 pts) What is the dimension of the null space $N(A)$? Provide a basis.

$$
\begin{aligned}
& \quad x_{1}+2 x_{2} \quad-x_{4}+x_{5}=0 \\
& N(A)=\operatorname{spman}\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

2. (10 pts) Suppose A is an m by n matrix. Show that the null space $N(A)$ and the row space $C\left(A^{\top}\right)$ are orthogonal, as subspaces of the vector space \mathbb{R}^{n}. (Hint. What is a good way to write a generic
Let \vec{x} be in $N(A)$, so $A \vec{x}=\overrightarrow{0}$.
Let \vec{z} be in $C\left(A^{\top}\right)$ so $\vec{z}=A^{\top} \vec{y}$ for sue \vec{y}.
Then

$$
\begin{aligned}
\vec{x}^{\top} \vec{z} & =\vec{x}^{\top}\left(A^{\top} \vec{y}\right)=\left(\vec{x}^{\top} A^{\top}\right) \vec{y} \\
& =(A \vec{x})^{\top} \vec{y}=\vec{o}^{\top} \vec{y}=0
\end{aligned}
$$

So \vec{x}, \vec{z} are orthogonal. Thus $N(A)$ and $C\left(A^{\top}\right)$ are orthogonal subspaces.

A matrix is symmetric if it equals its own transpose. But

$$
\left(A^{\top} A\right)^{\top}=A^{\top}\left(A^{\top}\right)^{\top}=A^{\top} A
$$

So $A^{\top} A$ is symmetric.
4. Consider the overdetermined linear system " $A \mathbf{v}=\mathbf{b}$ " with

$$
\begin{aligned}
& A^{\top} A=\left[\begin{array}{llll}
1 & 0 & 1 & -1 \\
1 & 2 & 2 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
0 & 2 \\
1 & 2 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
3 & 2 \\
2 & 10
\end{array}\right] \\
& A^{\top} \vec{b}=\left[\begin{array}{llll}
0 & 1 & -1 \\
12 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
-1 \\
-6 \\
-6
\end{array}\right]=\left[\begin{array}{c}
5 \\
12
\end{array}\right]
\end{aligned}
$$

normal equation:

$$
\begin{aligned}
& 3 v_{1}+2 v_{2}=5 \\
& 2 v_{1}+10 v_{2}=12
\end{aligned}
$$

(b) (6 pts) The solution of the normal equations is $\mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Is \mathbf{b} in the column space $C(A)$ for this system? How do you know?
Notice $A \vec{v}=\left[\begin{array}{l}2 \\ 2 \\ 3 \\ 0\end{array}\right] \neq \vec{b}$. So $A \vec{v}=P \vec{b}$ is not equal to \vec{b}. So \vec{b} is not in $(C A)$.
5. (10 pts) Consider this linear system $A \mathbf{x}=\mathbf{b}$:
$x_{1}+2 x_{2}+2 x_{3}+x_{4}=9$
$3 x_{1}+6 x_{2}+4 x_{3}+x_{4}=17$
$\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{ll}R & \mathbf{d}\end{array}\right]=\left[\begin{array}{ccccc}1 & 2 & 0 & -1 & -1 \\ 0 & 0 & 1 & 1 & 5\end{array}\right]$

$$
\vec{X}_{p}=\left[\begin{array}{c}
-1 \\
0 \\
5 \\
0
\end{array}\right], \overrightarrow{s_{1}}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right], \quad \overrightarrow{s_{2}}=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right]
$$

general solution:

$$
\vec{x}=\vec{x}_{p}+c_{1} \vec{s}_{1}+c_{2} \vec{s}_{2}=\left[\begin{array}{c}
-1-2 c_{1}+c_{2} \\
c_{1} \\
5-c_{2} \\
c_{2}
\end{array}\right]
$$

for any c_{1}, c_{2}
If \vec{x} is in N(A) then $A \vec{x}=\overrightarrow{0}$.
But then

$$
\left(A^{\top} A\right) \vec{x}=A^{\top}(A \vec{x})=A^{\top} \overrightarrow{0}=\overrightarrow{0}
$$

So \vec{x} is also in $N\left(A^{\top} A\right)$.
7. (8 pts$) \quad M_{3}$ is the vector space of all 3 by 3 matrices. Give a basis for the subspace S of symmetric matrices.

$$
\begin{aligned}
S=\operatorname{spm}\{ & \left\{\left[\begin{array}{cc}
10 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],\right. \\
& {\left.\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\right\} }
\end{aligned}
$$

(6 dimensions)
8. (6pts) Suppose A is any m by n matrix with full rank. Let $P=A\left(A^{\top} A\right)^{-1} A^{\top}$, the projection onto $C(A)$. Show that $P^{2}=P$.

$$
\begin{aligned}
P^{2} & =A\left(A^{\top} A\right)^{-1} \underbrace{A^{\top} A\left(A^{\top} A\right)^{-1} A^{\top}}_{=I} \\
& =A\left(A^{\top} A\right)^{-1} A^{\top}=P
\end{aligned}
$$

9. (8 pts) Suppose I is the 3 by 3 identity matrix and O is the 2 by 3 zero matrix. Consider the matrix

$$
A=\left[\begin{array}{cc}
I & I \\
O & O
\end{array}\right]
$$

$$
A \text { is } 5 \times 3
$$

which is 5 by 6 . What are the dimensions of the four subspaces?

$$
\begin{aligned}
& r=3 \rightarrow \text { dime(ut)- } 3 \\
& \operatorname{din}(x)=3 \\
& \operatorname{dim} C(A)= \\
& \operatorname{dim} N\left(A^{\top}\right)=\square \\
& \tau_{3} \text { the variables } \\
& \tau_{m-r}=5-3
\end{aligned}
$$

10. Consider the line through the origin in \mathbb{R}^{2} along the vector $\mathbf{a}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Suppose $\mathbf{b}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$.
(a) (5 pts) Sketch a, the line along a, and the vector \mathbf{b}, all on the same axes. (Try to make your sketch to scale!) Add $P \mathbf{b}=\hat{x} \mathbf{a}$, the projection of \mathbf{b} onto the line.

(b) (5 pts) Compute \hat{x} and $P \mathbf{b}=x \mathbf{a}$.

$$
\begin{aligned}
& \left.\hat{x}=\frac{\vec{a}^{\top} \vec{b}}{\vec{a}^{\top} \vec{a}}=\frac{\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
2
\end{array}\right]}{[1} 1\right][1] \\
& \text { So } P \vec{b}=\left[\begin{array}{ll}
1+2 \\
l_{2}
\end{array}\right]
\end{aligned}
$$

(c) (5 pts) Compute the projection matrix P.

Extra Credit. (3 pts) The complete solution to $A \mathbf{x}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ is $\mathbf{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]+c\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Find A. Show your work.
A is 2×2
$A\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ so $A=\left[\begin{array}{ll}1 & \alpha \\ 3 & \beta\end{array}\right]$
but $A\left[\begin{array}{l}0 \\ 1\end{array}\right]=\overrightarrow{0}$ so $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\overrightarrow{0}$
So:

$$
A=\left[\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right]
$$

