\qquad

Final Exam

No book, electronics, calculator, or internet access. Allowed notes: one sheet of letter paper $\left(=8.5^{\prime \prime} \times 11^{\prime \prime}\right.$ paper $)$, with anything written on both sides. 150 points possible. 125 minutes maximum.

1. Consider this 3×5 matrix and its row-reduced echelon form $(R=\operatorname{rref}(\mathrm{A}))$:

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 2 & 0 & -1 \\
0 & 2 & 4 & 0 & -2 \\
0 & 0 & 1 & 1 & 2
\end{array}\right] \quad \rightarrow \quad R=\left[\begin{array}{ccccc}
0 & 1 & 0 & -2 & -5 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) (3 pts) What is the rank of A ?
(b) (3 pts) What is the dimension of the null space of A ?
(c) (7 pts) Find a basis for each of these 3 subspaces associated to A : row space $C\left(A^{\top}\right), \quad$ column space $C(A), \quad$ null space $N(A)$
(d) $(5 \mathrm{pts})$

Fill-in the $\mathbf{6}$ bold boxes in the "big picture" at right. Give either the name of the subspace or the dimension which applies to the specific matrix A :

2. Suppose A is any m by n matrix.
(a) (7 pts) Show that the null space $N(A)$ is a subspace.
(b) (7pts) Show that the null space $N(A)$ and the row space $C\left(A^{\top}\right)$ are orthogonal.
3. (7 pts) Find the general solution of this linear system of two equations, and show your work: $3 x_{1}-x_{2}=4$
$-6 x_{1}+2 x_{2}=-8$
4. (a) (10 pts) Use the Gauss-Jordan elimination to compute the inverse of $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -2 & -2 & -6 \\ 1 & 4 & 4\end{array}\right]$. Show your work.
(b) (5 pts) At the first stages of elimination in part (a) you applied row operations which can be written as elimination matrices. Specifically, give the matrices E_{21} and E_{31} which you used.
5. Is each statement about square matrices True or False? If False, provide a counterexample. (a) (3 pts) If Q is an orthogonal matrix then Q is invertible.
(b) (3 pts) If P is a projection matrix then P is invertible.
(c) (3 pts) If P is a permutation matrix then P is invertible.
(d) (3 pts) If A is a diagonalizable matrix then A is invertible.
(e) (3 pts) If all eigenvalues of a matrix A are zero then $A=0$.
(f) (3 pts) If any eigenvalue of A is zero then A is not invertible.
(g) (3 pts) If $A^{2}=0$ then $A=0$.
6. (a) (10 pts) Form and solve the normal equations:. Show your work.

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
2 & 0 \\
2 & -1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]
$$

(b) (4 pts) In part (a), is the vector \mathbf{b} in the subspace $C(A)$? Explain your reasoning.
7. (7 pts) Recall that the projection matrix P which projects onto the column space $C(A)$ of a matrix A with linearly-independent columns (full column rank) is $P=A\left(A^{\top} A\right)^{-1} A^{\top}$. Show that P is a projection matrix.
8. (a) (7 pts) Suppose that a square matrix B is diagonalizable, that is, suppose $B=X \Lambda X^{-1}$ where X is invertible and Λ is diagonal. Give a formula which shows why it is easy to compute B^{100}.
(b) (7pts) Describe how to compute $\operatorname{det}(B)$ if $B=X \Lambda X^{-1}$ is diagonalized.
9. (7 pts) Let $Q=\left[\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ -\sqrt{3} / 2 & -1 / 2\end{array}\right]$. Show that Q is an orthogonal matrix.
10. (a) (5 pts) Recall that 2 by 2 rotation matrices have the form

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Using this form, find a non-identity matrix A with the property that $A^{4}=I$, and verify this property for your matrix.
(b) (5 pts) Compute the eigenvalues of the matrix A which you found in part (a).
11. (a) (10 pts) Find the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{lll}
2 & 2 & 2 \\
2 & 0 & 0 \\
2 & 0 & 0
\end{array}\right]
$$

(b) (3 pts) Is the matrix in part (a) diagonalizable? Give a brief justification. (Hint. No further calculations are necessary.)
12. Consider the transformations from $\mathbf{V}=\mathbb{R}^{2}$ to $\mathbf{W}=\mathbb{R}^{2}$. For each one, is it linear? (Show it is, or give a counterexample.) Then give a simplified formula for $T(T(\mathbf{v}))$.
(a) (5 pts) $\quad T(\mathbf{v})=-\mathbf{v}+(1,1)$
(b) $(5 \mathrm{pts}) \quad T(\mathbf{v})=\frac{1}{2}\left(v_{1}+v_{2}, v_{1}+v_{2}\right)$

Extra Credit. (3 pts) The matrix $Q=\left[\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ -\sqrt{3} / 2 & -1 / 2\end{array}\right]$ in problem 8 is neither a rotation matrix nor a reflection matrix. But it can be factored into the product of a rotation matrix and a reflection matrix. Do so.

