Name:

Math 314 Linear Algebra (Bueler)

Friday, 29 April 2022

ſR

Final Exam

No book, electronics, calculator, or internet access. Allowed notes: one sheet of letter paper ($= 8.5'' \times 11''$ paper), with anything written on both sides. 150 points possible. 125 minutes maximum.

1. Consider this
$$3 \times 5$$
 matrix and its row-reduced echelon form $(R = rref(A))$:

	Γ0	1	2	0	-1]				Γ0	1	0	-2	$\begin{bmatrix} -5\\2\\0 \end{bmatrix}$
A =	0	2	4	0	$\begin{bmatrix} -1 \\ -2 \end{bmatrix}$	\rightarrow	j	R =	0	0	1	1	2
	0	0	1	1	$2 \rfloor$				0	0	0	0	0

(a) (3 pts) What is the rank of A?

(b) (3 pts) What is the dimension of the null space of A?

(c) (7 *pts*) Find a basis for each of these 3 subspaces associated to A: row space $C(A^{\top})$, column space C(A), null space N(A)

- **2.** Suppose A is any m by n matrix.
- (a) (7 pts) Show that the null space N(A) is a subspace.

(b) (7 pts) Show that the null space N(A) and the row space $C(A^{\top})$ are orthogonal.

3. (7 pts) Find the general solution of this linear system of two equations, and show your work: $3x_1 - x_2 = 4$ $-6x_1 + 2x_2 = -8$ 4. (a) $(10 \ pts)$ Use the Gauss-Jordan elimination to compute the inverse of

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -2 & -6 \\ 1 & 4 & 4 \end{bmatrix}$$
. Show your work.

(b) (5 pts) At the first stages of elimination in part (a) you applied row operations which can be written as elimination matrices. Specifically, give the matrices E_{21} and E_{31} which you used.

- 5. Is each statement about square matrices True or False? If False, provide a counterexample.
- (a) (3 pts) If Q is an orthogonal matrix then Q is invertible.

(b) (3 pts) If P is a projection matrix then P is invertible.

(c) (3 pts) If P is a permutation matrix then P is invertible.

(d) (3 pts) If A is a diagonalizable matrix then A is invertible.

(e) $(3 \ pts)$ If all eigenvalues of a matrix A are zero then A = 0.

(f) (3 pts) If any eigenvalue of A is zero then A is not invertible.

(g) $(3 \ pts)$ If $A^2 = 0$ then A = 0.

6. (a) (10 pts) Form and solve the normal equations:. Show your work.

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 2 & 0 \\ 2 & -1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

(b) (4 pts) In part (a), is the vector **b** in the subspace C(A)? Explain your reasoning.

7. (7 *pts*) Recall that the projection matrix P which projects onto the column space C(A) of a matrix A with linearly-independent columns (full column rank) is $P = A(A^{\top}A)^{-1}A^{\top}$. Show that P is a projection matrix.

8. (a) (7 pts) Suppose that a square matrix B is diagonalizable, that is, suppose $B = X\Lambda X^{-1}$ where X is invertible and Λ is diagonal. Give a formula which shows why it is easy to compute B^{100} .

(b) (7 *pts*) Describe how to compute det(B) if $B = X\Lambda X^{-1}$ is diagonalized.

9.
$$(7 \ pts)$$
 Let $Q = \begin{bmatrix} 1/2 & -\sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{bmatrix}$. Show that Q is an orthogonal matrix.

10. (a) (5 pts) Recall that 2 by 2 rotation matrices have the form

$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

 $A = \begin{bmatrix} \sin \theta & \cos \theta \end{bmatrix}$ Using this form, find a non-identity matrix A with the property that $A^4 = I$, and verify this property for your matrix.

Compute the eigenvalues of the matrix A which you found in part (a). **(b)** (5 pts)

11. (a) $(10 \ pts)$ Find the eigenvalues and eigenvectors of the matrix

$$A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}.$$

(b) (3 pts) Is the matrix in part (a) diagonalizable? Give a brief justification. (*Hint.* No further calculations are necessary.)

12. Consider the transformations from $\mathbf{V} = \mathbb{R}^2$ to $\mathbf{W} = \mathbb{R}^2$. For each one, is it linear? (Show it is, or give a counterexample.) Then give a simplified formula for $T(T(\mathbf{v}))$.

(a) (5 pts) $T(\mathbf{v}) = -\mathbf{v} + (1,1)$

(b) (5 *pts*) $T(\mathbf{v}) = \frac{1}{2}(v_1 + v_2, v_1 + v_2)$

9

BLANK SPACE

10

Extra Credit. (3 pts) The matrix $Q = \begin{bmatrix} 1/2 & -\sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{bmatrix}$ in problem 8 is neither a rotation matrix nor a reflection matrix. But it can be factored into the product of a rotation matrix and a reflection matrix. Do so.

BLANK SPACE