Final Exam
No book, electronics, calculator, or internet access. Allowed notes: one sheet of letter paper ($=8.5^{\prime \prime} \times 11^{\prime \prime}$ paper), with anything written on both sides. 150 points possible. 125 minutes maximum.

1. Consider this 3×5 matrix and its row-reduced echelon form $(R=\operatorname{rref}(\mathrm{A}))$:

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 2 & 0 & -1 \\
0 & 2 & 4 & 0 & -2 \\
0 & 0 & 1 & 1 & 2
\end{array}\right] \quad \rightarrow \quad R=\left[\begin{array}{ccccc}
0 & 1 & 0 & -2 & -5 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) (3 pts) What is the rank of A ?
(b) (3 pts) What is the dimension of the null space of A ?
(c) (7 pts) Find a basis for each of these 3 subspaces associated to A :
row space $C\left(A^{\top}\right), \quad$ column space $C(A), \quad$ null space $N(A)$

$$
\left.C(A T)=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
0 \\
-25 \\
-5
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
2
\end{array}\right]\right\}, C(A)=\operatorname{spm}\left\{\left[\begin{array}{c}
1 \\
2 \\
0
\end{array}\right], \begin{array}{c}
2 \\
4 \\
1
\end{array}\right]\right\},
$$

(d) (5 pts)

Fill-in the $\mathbf{6}$ bold boxes in the "big picture" at right. Give either the name of the subspace or the dimension which applies to the specific matrix A :

$$
\left\{\left[\begin{array}{c}
1 \\
\vdots \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-5 \\
-2 \\
0
\end{array}\right]\right\}
$$

\qquad

$N(A)=\operatorname{spman}\left\{\left[\begin{array}{c}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -2 \\ -2 \\ 1\end{array}\right]\right\}$ Give either the name of the

2. Suppose A is any m by n matrix.
(a) (7 pts) Show that the null space $N(A)$ is a subspace.

If \vec{x} and \vec{y} are in $N(A)$, and c, d are real
numbers, then $A(c \vec{x}+d \vec{y})=c A \vec{x}+d A \vec{y}=c \cdot \overrightarrow{0}+d \cdot \overrightarrow{0}=\overrightarrow{0}$.
Thus $c \vec{x}+d \vec{y}$ is in $N(A)$, so $N(A)$ is a
subspace.
(b) (7 pts) Show that the null space $N(A)$ and the row space $C\left(A^{\top}\right)$ are orthogonal.

If \vec{x} is in $N(A)$ and $\vec{y}=A^{\top} \vec{w}$ is in $C\left(A^{\top}\right)$ then $\vec{x}^{\top} \vec{y}=\vec{x}^{\top} A^{\top} \vec{w}=(A \vec{x})^{\top} \vec{w}=\overrightarrow{0}^{\top} \vec{w}=0$,
Thus \vec{x}, \vec{y} are orthogonal, so $N(A), C\left(A^{\top}\right)$
are or thogonal.
3. (7 pts) Find the general solution of this linear system of two equations, and show your work:

4. (a) (10 pts) Use the Gauss-Jordan elimination to compute the inverse of

(b) (5 pts) At the first stages of elimination in part (a) you applied row operations which can be written as elimination matrices. Specifically, give the matrices E_{21} and E_{31} which you used.

$$
\begin{aligned}
& E_{21}=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \leftarrow \text { used as: }\left[E_{21} A \mid E_{21}, I\right] \\
& E_{31}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] \leftarrow \text { then: }\left[E_{31}, E_{21} A \mid E_{31} E_{21} I\right] \\
& \text { etc. }
\end{aligned}
$$

5. Is each statement about square matrices True or False? If False, provide a counterexample.
(a) (3 pts) If Q is an orthogonal matrix then Q is invertible.

(b) (3 pts) If P is a projection matrix then P is invertible.

$$
P=0 \text { satisfies } P^{2}=P
$$

(c) (3 pts) If P is a permutation matrix then P is invertible.

(d) (3 pts) If A is a diagonalizable matrix then A is invertible.

$$
\begin{array}{r}
A=0 \text { is diagonalizabk:: } \\
O=I O I^{-1}
\end{array}
$$

(e) (3 pts) If all eigenvalues of a matrix A are zero then $A=0$.

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

(f) (3 pts) If any eigenvalue of A is zero then A is not invertible.

$$
\binom{\text { if } A \vec{v}=0 \vec{v}=\overrightarrow{0} \text { for } \vec{v} \neq 0}{\text { then } N C A \neq Z}
$$

(g) (3 pts) If $A^{2}=0$ then $A=0$.

$A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
6. (a) (10 pts) Form and solve the normal equations:. Show your work.

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
2 & 0 \\
2 & -1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right] \\
& \left.A^{\top} A \vec{x}=A^{\top} \vec{b}\right\} \begin{array}{c}
\text { normal } \\
\text { ecus }
\end{array} \\
& A^{\top} A=\left[\begin{array}{ccc}
1 & 1 & 2
\end{array} 2\right]\left[\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array} 0-1\right]\left[\begin{array}{cc}
1 & 0 \\
2 & 0 \\
2 & -1
\end{array}\right]=\left[\begin{array}{cc}
10 & -3 \\
-3 & 2
\end{array}\right] \\
& A^{\top} \vec{b}=\left[\begin{array}{cccc}
1 & 1 & 2 & 2 \\
-1 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1
\end{array}\right] \\
& {\left[\begin{array}{cc|c}
10 & -3 & 3 \\
-3 & 2 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
10 & -3 & 3 \\
0 & 11 / 10 & -1 / 10
\end{array}\right] \quad R_{2} \leqslant R_{2}+\frac{3}{10} R_{1}} \\
& x_{2}=(-1 / 10) /(11 / 10)=-1 / 11 \\
& \text { 差 } 10 x_{1}-3(-1 / 11)=3 \leftrightarrow 10 x_{1}=3-3 / 11 \Leftrightarrow x_{1}=\left(\frac{30}{1}\right) / 10=\frac{3}{11} \\
& \vec{x}=\left[\begin{array}{c}
3 / 11 \\
-1 / 11
\end{array}\right]
\end{aligned}
$$

(b) (4 pts) In part (a), is the vector \mathbf{b} in the subspace $C(A)$? Explain your reasoning.
no. if \vec{b} were in $C(A)$ then $A \vec{x}=\vec{b}$ exactly because normal equation are $A \vec{x}=P \vec{b}$ and $\vec{p}=\vec{b}$ if \vec{b} in $\left((A)\right.$. but $A \vec{x}=\left[\begin{array}{l}4 / 11 \\ 3 / 11 \\ 6 / 11 \\ 7 / 11\end{array}\right] \neq \vec{b}$
7. (7 pts) Recall that the projection matrix P which projects onto the column space $C(A)$ of a matrix A with linearly-independent columns (full column rank) is $P=A\left(A^{\top} A\right)^{-1} A^{\top}$. Show that P is a
so P is a projection
8. (a) (7 pts) Suppose that a square matrix B is diagonalizable, that is, suppose $B=X \Lambda X^{-1}$ where
X is invertible and Λ is diagonal. Give a formula which shows why it is easy to compute B^{100}.

$$
\begin{aligned}
B^{100} & =X \Omega \underset{I}{X_{I}^{-1} X} \Lambda \underset{I}{X_{I}^{-1}} \cdots \frac{X}{I} \Lambda X^{-1} \\
& =X \Lambda_{\text {easy: }}^{100} X^{-1} \quad \Lambda^{100}=\left[\begin{array}{lll}
\lambda_{1}^{100} & & \\
& \ddots & \lambda_{n}^{100}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}(B)=\operatorname{det}(X) \operatorname{det}(\Lambda) \operatorname{det}\left(X^{-1}\right) \\
& =\operatorname{det}(x)\left(\lambda_{1} \cdots \lambda_{n}\right) \frac{1}{\operatorname{det}(x)} \\
& =\lambda_{1} \cdots \lambda_{n}=\prod_{i=1}^{n} \lambda_{i}
\end{aligned}
$$

9. $(7 \mathrm{pts}) \quad$ Let $Q=\left[\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ -\sqrt{3} / 2 & -1 / 2\end{array}\right]$. Show that Q is an orthogonal matrix. $Q^{\top} Q=\frac{1}{2}\left[\begin{array}{cc}1 & -\sqrt{3} \\ -\sqrt{3} & -1\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}1 & -\sqrt{3} \\ -\sqrt{3} & -1\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}1+3 & -\sqrt{3}+\sqrt{3} \\ \sqrt{3} \sqrt{3} & 1+3\end{array}\right]$ $=\frac{1}{4}\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
10. (a) (5 pts) Recall that 2 by 2 rotation matrices have the form

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Using this form, find a non-identity matrix A with the property that $A^{4}=I$, and verify this property for your matrix.
\bullet -

$$
A^{2}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], \quad A^{4}=\left(A^{2}\right)^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

(b) (5 pts) Compute the eigenvalues of the matrix A which you found in part (a).

$$
\begin{gathered}
p(\lambda)=\operatorname{det}\left[\begin{array}{cc}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right]=\lambda^{2}+1=0 \\
\lambda= \pm i \\
\lambda_{1}=+i, \lambda_{2}=-i
\end{gathered}
$$

11. (a) $(10 \mathrm{pts})$ Find the eigenvalues and eigenvectors of the matrix

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
2 & 2 & 2 \\
2 & 0 & 0 \\
2 & 0 & 0
\end{array}\right] . \quad p(\lambda)=\operatorname{det}\left[\begin{array}{ccc}
2-\lambda & 2 & 2 \\
2 & -\lambda & 0 \\
2 & 0 & -\lambda
\end{array}\right] \\
& =(2-\lambda)\left(\lambda^{2}-0\right)-2(-2 \lambda-0)+2(0+2 \lambda) \\
& =(2-\lambda) \lambda^{2}+4 \lambda+4 \lambda=\lambda\left(2 \lambda-\lambda^{2}+8\right) \\
& =-\lambda\left(\lambda^{2}-2 \lambda-8\right)=-\lambda(\lambda-4)(\lambda+2) \lambda=-2,0,4
\end{aligned}
$$

(b) (3 pts) Is the matrix in part (a) diagonalizable? Give a brief justification. (Hint. No further calculations are necessary.)

Yes. A is symmetric
12. Consider the transformations from $\mathbf{V}=\mathbb{R}^{2}$ to $\mathbf{W}=\mathbb{R}^{2}$. For each one, is it linear? (Show it is, or give a counterexample.) Then give a simplified formula for $T(T(\mathbf{v}))$.
(a) $(5 \mathrm{pts})$
$T(\mathbf{v})=-\mathbf{v}+(1,1)$
not linear: $T(\overrightarrow{0})=(1,1) \neq \overrightarrow{0}$

$$
\begin{gathered}
T(T(\vec{v}))=T(-\vec{v}+(1,1))=-(-\vec{v}+(1,1))+(1,1) \\
=\vec{v}-(1,1)+(1,1)=\vec{v}
\end{gathered}
$$

(b) $(5 p t s) \quad T(\mathbf{v})=\frac{1}{2}\left(v_{1}+v_{2}, v_{1}+v_{2}\right)$
linear: $T(c \vec{v}+d \vec{w})=T\left(\left(a v_{1}+d w_{1}, a v_{2}+d w_{2}\right)\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(a v_{1}+d w_{1}+a v_{2}+d w_{2}, a v_{1}+d w_{1}+a v_{2}+d w_{2}\right) \\
& =\frac{1}{2}\left(a v_{1}+a v_{2}, a v_{1}+a v_{2}\right)+\frac{1}{2}\left(d w_{1}+d w_{2}, d w_{1}+d w_{2}\right) \\
& =a \cdot \frac{1}{2}\left(v_{1}+v_{2}, v_{1}+v_{2}\right)+d \cdot \frac{1}{2}\left(w_{1}+w_{2}, w_{1}+w_{2}\right) \\
& =a \cdot(\vec{v})+d T(\vec{w})
\end{aligned}
$$

$$
\begin{aligned}
& T(T(\vec{v}))=T\left(\left(\frac{v_{1}+v_{2}}{2}, \frac{v_{1}+v_{2}}{2}\right)\right) \quad \text { в. spar } \\
&=\frac{1}{2}\left(\frac{v_{1}+v_{2}}{2}+\frac{v_{1}+v_{2}}{2}, \frac{v_{1}+v_{2}}{2}+\frac{v_{1}+v_{2}}{2}\right) \\
& \text { is a } \\
&=\frac{1}{2}\left(v_{1}+v_{2}, v_{1}+v_{2}\right)=T(\vec{v}) \leqslant
\end{aligned}
$$

Extra Credit. (3 pts) The matrix $Q=\left[\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ -\sqrt{3} / 2 & -1 / 2\end{array}\right]$ in problem is neither a rotation matrix nor a reflection matrix. But it can be factored into the product of a rotation matrix and a reflection matrix. Do so.

$$
R=\text { reflection }
$$

$S=$ rotation by $\pi / 3$ radians

$$
=\left[\begin{array}{cc}
\cos (\pi / 3) & -\sin (\pi / 3) \\
\sin (\pi / 3) & \cos (\pi / 3)
\end{array}\right]
$$

$\tau_{\text {see problem io }}$

BLANK SPACE

