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Math F302 Worksheet 30 August 2023

SOME HIGH POINTS OF CALCULUS

This is a review of some calculus you will need for differential equations. \\ , /
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1. Chain rule. Recall the chain rule ? 5 (A
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(b) Construct your own chain rule example:
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(Make it different from (a) and non-trivial but not too complicated. In particular, neither f(x)
nor g(x) should be as simple as a linear function, i.e. ax + b. Remember that x*, e® Inz, b,
log, x, sinz, cos x, tan x, sec z, arcsin x are common functions from calculus which you must
be able to correctly differentiate! Use this problem to practice those that are least familiar?)
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ser that the indefinite integral just means “anti-derivative,”
¢ans exactly the same thing as (F(z))" = f(z). Recall you can
by recognizing a derivative, perhaps with some fiddling with
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3. Integration by substitution. Substitution is the chain rule in reverse. For example, from
1 (a) we have
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2. Indefinite integration. Reme
so [ f(z)dx = F(z)+C
do some integrals just
constants.
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(It is common to need to fiddle with constant factors like the “2” here.) In general:
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(@) Turn your cha\ into an integration by substitution.
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4.

SSm

Product rule and integration-by-parts. The product rule
[u(@)v(@)]' = v (2)v(z) + u(z)v'(z)

can be used in reverse too. The indefinite integral of both sides of the above gives

u(x)v(z) = /u'(x)v(:v) dx+/u(x)v'(1:) dr.

The main use of this is to exchange one of the last two integrals for the other, which is
integration-by-parts:

(You probably have this memorized as [ udv = uv — [vdu.) e
(@) Construct your own product rule example: “f = . -
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(Again, make it non-trivial but not too complicated.)

(b) Turn the above example into an integration-by-parts example.

() 2dx = SInG) hax — S’e”x Cos ()@ A
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5. Fundamental Theorem of Calculus (FTC). When you compute a definite integral by hand
you usually use a form of the FTC:

?/‘ C ﬁ' [ / f(z)dz = F(b) — F(a) where F'(z) = f(x)

This says that doing an integral is the same as un-doing a derivative.

Recall that if you do a definite integral by substitution then you can change the limits:

(@) Compute
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There is another form of the FTC, often called “FTC 1.” It says that a derivative un-does

an integral:
d x
([ r0a) = s

The integral inside the parentheses computes the area under the curve y = f(t) from
t = atot = x. One should think of this area varying as x changes, thus defining a
function g(z) = [ f(t) dt. One may answer some questions about g(z) even when an
antiderivative of the integrand is not known.

(b) Suppose we define

Compute the exact value of g(2). a(z) Q

(c) For the same function ¢(z), find ¢'(x).
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