Some DE to solve
You know how to solve first-order separable (section 2.2) and linear LEs. Decide if these are separable or linear (or both or neither), and find the general solution if possible.
SL 1. $\frac{d y}{d x}=1+x^{2} \quad y(x)=\int 1+x^{2} d x=x+\frac{x^{3}}{3}+C$
$S{ }^{2}$

$$
\begin{aligned}
& \frac{d y}{d x}=1+y^{2} \\
& \int \frac{d y}{1+y^{2}}=\int d x \int \begin{array}{l}
\arctan y=x+c \\
y(x)=\tan (x+c)
\end{array}
\end{aligned}
$$

SL 3. $\frac{d y}{d x}=1+y$ (solved as separable:)

$$
\begin{aligned}
& \text { to do the intererl.] } \\
& \text { [it is called er }(x) \text {, } \\
& \text { essentials] } \\
& \text { [neither]. } \widetilde{\frac{d y}{d x}=1+x y^{2}} \\
& \text { I don't know how to solve this, or } \\
& \text { even get started. }
\end{aligned}
$$

SL6. $\frac{d y}{d x}=x+x y$ (solved as separable:)

$$
\begin{aligned}
& \int \frac{d y}{1+y}=\int x d x \\
& \ln (\mid+y)=\frac{x^{2}}{2}+c
\end{aligned} \rightarrow \begin{aligned}
& 1+y=A e^{x^{2} / 2} \\
& y(x)=A e^{x^{2} / 2}-1
\end{aligned}
$$

