8.4 The matrix exponential solves systems a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

solving the simplest ODEs

- simplest scalar ODE:

$$
y^{\prime}=a y \quad \text { has solution } \quad y(t)=c e^{a t}
$$

- simplest system of ODEs:

$$
\mathbf{X}^{\prime}=\mathbf{A X} \quad \text { has solution } \quad \mathbf{X}(t)=e^{\mathbf{A} t} \mathbf{C}
$$

- the last formula is new in $\S 8.4$

what does $e^{\text {At }}$ mean?

- what does $e^{\mathbf{A} t}$ mean?
- what does $e^{a t}$ mean?
* what does e^{x} mean? \longleftarrow we know this one!

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

- definition. if \mathbf{A} is a square matrix and t is any number then

$$
\begin{aligned}
e^{\mathbf{A} t} & =\mathbf{I}+\mathbf{A} t+\mathbf{A}^{2} \frac{t^{2}}{2}+\mathbf{A}^{3} \frac{t^{3}}{3!}+\mathbf{A}^{4} \frac{t^{4}}{4!}+\ldots \\
& =\sum_{k=0}^{\infty} \mathbf{A}^{k} \frac{t^{k}}{k!}
\end{aligned}
$$

- note $\mathbf{A}^{0}=\mathbf{I}$ makes sense if we believe $x^{0}=1$
- also recall $0!=1$

like an exercise on Homework §8.4

- $e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\mathbf{A}^{2} \frac{t^{2}}{2}+\mathbf{A}^{3} \frac{t^{3}}{3!}+\mathbf{A}^{4} \frac{t^{4}}{4!}+\ldots$
- example 1. use the above series to compute $e^{\mathbf{A} t}$ and $e^{-\mathbf{A} t}$, in simplified form, if

$$
\mathbf{A}=\left(\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right)
$$

like an exercise on Homework §8.4

- example 2. use the series definition to compute $e^{\mathbf{A} t}$, in simplified form, if

$$
\mathbf{A}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
2 & 0 & 0 \\
-1 & 3 & 0
\end{array}\right)
$$

like an exercise on Homework §8.4

- example 3. use the series definition to compute $e^{\mathbf{A} t}$, in simplified form, if

$$
\mathbf{A}=\left(\begin{array}{ccc}
-3 & -3 & -3 \\
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right)
$$

last two were special

- example 1 illustrates that diagonal matrices are easy to exponentiate
- example 2 and example 3 had unusual matrices with the property that some power was the zero matrix:

$$
\mathbf{A}^{k}=\mathbf{0}
$$

- but the above are not typical cases
- for most A:
- $e^{\mathbf{A} t}$ has infinitely-many nonzero terms
- the pattern is harder to see

like an exercise on Homework §8.4

- example 4. use the series definition to compute $e^{\mathbf{A} t}$, in simplified form, if

$$
\mathbf{A}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

derivative of $e^{\mathbf{A} t}$

- fact 1.

$$
\frac{d}{d t}\left(e^{\mathbf{A} t}\right)=\mathbf{A} e^{\mathbf{A} t}
$$

Proof.

$$
\begin{aligned}
\frac{d}{d t}\left(e^{\mathbf{A} t}\right) & =\frac{d}{d t}\left(\mathbf{I}+\mathbf{A} t+\mathbf{A}^{2} \frac{t^{2}}{2}+\mathbf{A}^{3} \frac{t^{3}}{3!}+\mathbf{A}^{4} \frac{t^{4}}{4!}+\ldots\right) \\
& =\mathbf{0}+\mathbf{A}+\mathbf{A}^{2} \frac{2 t}{2}+\mathbf{A}^{3} \frac{3 t^{2}}{3!}+\mathbf{A}^{4} \frac{4 t^{3}}{4!}+\ldots \\
& =\mathbf{A}\left(\mathbf{I}+\mathbf{A} t+\mathbf{A}^{2} \frac{t^{2}}{2}+\mathbf{A}^{3} \frac{t^{3}}{3!}+\ldots\right)=\mathbf{A} e^{\mathbf{A} t}
\end{aligned}
$$

- fact 2. if $\mathbf{X}(t)=e^{\mathbf{A} t} \mathbf{C}$ then $\mathbf{X}^{\prime}=\mathbf{A} \mathbf{X}$
- fact 3. if $\mathbf{X}(t)=e^{\mathbf{A t}} \mathbf{C}$ then $\mathbf{X}(0)=\mathbf{C}$
the matrix exponential solves systems in summary:
(1) for the ODE

$$
\mathbf{X}^{\prime}=\mathbf{A X}
$$

the general solution is

$$
\mathbf{X}(t)=e^{\mathbf{A} t} \mathbf{C}
$$

where $\mathbf{C}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$ is a vector of unknown constants
(2) for the ODE IVP

$$
\mathbf{X}^{\prime}=\mathbf{A} \mathbf{X}, \quad \mathbf{X}(0)=\mathbf{X}_{0}
$$

the solution is

$$
\mathbf{X}(t)=e^{\mathbf{A} t} \mathbf{X}_{0}
$$

use a computer

- for the ODE IVP

$$
\mathbf{X}^{\prime}=\mathbf{A} \mathbf{X}, \quad \mathbf{X}(0)=\mathbf{C}
$$

suppose you want the solution at time t :

$$
\mathbf{X}(T)=e^{\mathbf{A} t} \mathbf{C}
$$

- with Matlab or Octave:

```
>> A = [...];
>> C = [...];
>> t = ... % set the time
>> expm(A*t) * C
% enter square matrix A
% enter column vector C
\% bam! done!
```

- expm() computes the matrix exponential
- be careful $\ldots \exp ()$ is not what you want

. . . for fast numbers

- example 5. solve the initial value problem for $x(2), y(2), z(2)$:

$$
\begin{array}{ll}
x^{\prime}=2 x-5 y+z & x(0)=-2 \\
y^{\prime}=-x+y+3 z & y(0)=0 \\
z^{\prime}=x-2 y-z & z(0)=3
\end{array}
$$

solution.

```
>> A = [2 -5 1; -1 1 3; 1 -2 -1];
>> C = [-2; 0; 3];
>> expm(A*2) * C
ans =
    -1227.9
    68.564
    -381.69
```

so: $\quad x(2)=-1227.9, y(2)=68.564, z(2)=-381.69$

can you check it?

- what tool would help us quickly check previous slide result?
- consider all the tools in the whole course ...
- answer. the most general tool is numerical approximation
- example 5, cont. check the solution on the previous slide solution.

```
>> f = @(t,U) [2*U(1)-5*U(2)+U(3); ...
    -U(1)+U(2)+3*U(3); ...
    U(1)-2*U(2)-U(3)];
>> [tt,UU] = ode45(f,[0,2],[-2;0;3]);
>> UU(end,:)
ans =
    -1227.9 68.565 -381.7
```


by-hand usage?

- as long as we can compute $e^{\mathbf{A t}}$ by hand, we can solve an ODE by hand using the matrix exponential
- example 6. use $\mathbf{X}(t)=e^{\mathbf{A} t} \mathbf{C}$ to find the general solution of the given system

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
2 & 0 & 0 \\
-1 & 3 & 0
\end{array}\right) \mathbf{X}
$$

expectations

- to learn this material, just listening to a lecture is not enough
- read section 8.4
- read and do Homework 8.4
- I hope you have learned something from this course!
- perhaps even found it interesting?
- note that
- MATH 302 discrete mathematics
- MATH 314 linear algebra
- STAT 300 probability and statistics
- MATH 265 introduction to mathematical proof are courses of more-or-less comparable level to MATH 302
- a mathematics minor requires calculus I,II,III \checkmark, and three MATH courses at the 300/400 level (including MATH 265 and STAT 300 as special cases) $\ldots \checkmark$ on one of those!

