8.1 Linear systems of first-order ODEs: basics and forms a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

for textbook: D. Zill, A First Course in Differential Equations with Modeling Applications, 11th ed.

first-order systems

 we have already seen the most general form of a system of ODEs (§3.3):

$$\frac{dx_1}{dt} = g_1(t, x_1, x_2, \dots, x_n)$$
$$\frac{dx_2}{dt} = g_2(t, x_1, x_2, \dots, x_n)$$
$$\vdots$$
$$\frac{dx_n}{dt} = g_n(t, x_1, x_2, \dots, x_n)$$

 $\circ\,$ my claim in §3.3: everything is modeled this way

 Chapter 8 is about a special case: suppose variables x_i only appear with first powers

first-order linear systems

• a first-order system of linear ODEs is

$$\frac{dx_1}{dt} = a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + f_1(t)
\frac{dx_2}{dt} = a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + f_2(t)
\vdots
\frac{dx_n}{dt} = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n + f_n(t)$$

- o the book calls this the normal form of the system
- $a_{ij}(t)$ functions are the *coefficients*
 - if a_{ij}(t) are independent of time then we say it is a constant-coefficient system
- $f_i(t)$ are the source functions
 - if all $f_i = 0$ then the system is homogeneous

matrix form

• a first-order linear system

$$\frac{dx_1}{dt} = a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + f_1(t)$$

$$\vdots$$

$$\frac{dx_n}{dt} = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n + f_n(t)$$

• is usually written

$$\frac{d}{dt}\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix} = \begin{pmatrix}a_{11} & a_{12} & \dots & a_{1n}\\a_{21} & a_{22} & & a_{2n}\\\vdots & & \ddots & \vdots\\a_{n1} & a_{n2} & \dots & a_{nn}\end{pmatrix}\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix} + \begin{pmatrix}f_1\\f_2\\\vdots\\f_n\end{pmatrix}$$

or

$$\mathbf{X}' = \mathbf{A}\mathbf{X} + \mathbf{F}$$

a matrix times a vector

- so: recall matrix-vector multiplication!
- example 1. compute the product

$$\begin{pmatrix} 2 & -3 & -2 \\ 1 & 0 & 5 \\ 4 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} =$$

• example 2. compute

$$\begin{pmatrix} 3 & -2 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} =$$

example matrix forms

instructions: write the linear systems in matrix form X' = AX + F (what is X? A? F?)

• example 3.

$$\frac{dx}{dt} = -2x$$
$$\frac{dy}{dt} = x - y$$

• example 4.

$$\frac{dx_1}{dt} = -0.04x_1 + 0.02x_2$$
$$\frac{dx_2}{dt} = 0.04x_1 - 0.07x_2 + 0.03x_3$$
$$\frac{dx_3}{dt} = 0.05x_2 - 0.05x_3$$

example matrix forms, cont.

• example 5.

$$y' = u$$

$$u' = v$$

$$v' = w$$

$$w' = 4w - 7v - 10u + y + \sin(3t)$$

note: (i) examples 3,4,5 are constant coefficient, (ii) examples 3,4 are homogeneous

matrix form ... or not

• example 6. for the linear system

$$\frac{d}{dt}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}3 & -7\\1 & 1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} + \begin{pmatrix}4\\8\end{pmatrix}\sin t + \begin{pmatrix}t-4\\2t+1\end{pmatrix}e^{4t}$$

(a) identify **A** and **F** so it is in the form $\mathbf{X}' = \mathbf{A}\mathbf{X} + \mathbf{F}$

(b) write it *without* the use of matrices

solution.

yes, but what does it look like?

• example 4 came from my "connected tanks" example in §3.3:

$$\frac{dx_1}{dt} = -0.04x_1 + 0.02x_2
\frac{dx_2}{dt} = 0.04x_1 - 0.07x_2 + 0.03x_3 \iff \mathbf{X}' = \mathbf{A}\mathbf{X}
\frac{dx_3}{dt} = 0.05x_2 - 0.05x_3 \qquad \mathbf{A} = \begin{pmatrix} -0.04 & 0.02 & 0 \\ 0.04 & -0.07 & 0.03 \\ 0 & 0.05 & -0.05 \end{pmatrix}$$

• suppose initial conditions $x_1(0) = 30$ $x_2(0) = 10$ $x_3(0) = 5$

.

what does it look like?

• variables *t*, *x*₁, *x*₂, *x*₃ ... 4D? ... unvisualizable?

x (t) x2(t)

x_(t)

400

- alternate view is to suppress t and plot in $3D = x_1, x_2, x_3$
- see code brines.m

30

25

20 salt (pounds)

15

10

5

0

ίΟ.

100

200

t (minutes)

300

what does it look like?

- variables $t, x_1, x_2, x_3 \dots 4D? \dots$ unvisualizable?
- alternate view is to suppress t and plot in 3D = x₁, x₂, x₃
- see code brines.m
 - uses ode45
 - generates *rotatable* figure

these problems have solutions

Theorem Consider a linear system with initial values:

$$\mathbf{X}' = \mathbf{A}\mathbf{X} + \mathbf{F}, \quad \mathbf{X}(t_0) = \mathbf{X}_0$$

Assume the entries in $\mathbf{A}(t)$ and $\mathbf{F}(t)$ are continuous. Assume \mathbf{X}_0 is a given vector. Then there is one solution $\mathbf{X}(t)$.

- so what?
- you can make predictions

from knowledge of current state and laws about how things change to create one prediction $egin{aligned} \mathbf{X}(t_0) &= \mathbf{X}_0 \ \mathbf{X}' &= \mathbf{A}\mathbf{X} + \mathbf{F} \ \mathbf{X}(t) \end{aligned}$

these problems have general solutions

Theorem Consider a homogeneous linear system:

 $\mathbf{X}' = \mathbf{A}\mathbf{X}$

There is a fundamental set of solutions $X_1(t), X_2(t), \dots, X_n(t)$ so that any solution of the linear system is a linear combination:

$$\mathbf{X}(t) = c_1 \mathbf{X}_1(t) + c_2 \mathbf{X}_2(t) + \dots + c_n \mathbf{X}_n(t)$$

these problems have general solutions 2

Theorem Consider a nonhomogeneous linear system:

$$\mathbf{X}' = \mathbf{A}\mathbf{X} + \mathbf{F}$$

Suppose $X_p(t)$ is one solution of this system. Let $X_c(t)$ be the general solution to the associated homogeneous system X' = AX,

$$\mathbf{X}_{c}(t) = c_{1}\mathbf{X}_{1}(t) + c_{2}\mathbf{X}_{2}(t) + \cdots + c_{n}\mathbf{X}_{n}(t)$$

Then the general solution is

$$\mathbf{X}(t) = \mathbf{X}_c(t) + \mathbf{X}_p(t)$$

like #12 in §8.1

- in §8.1 you will be asked to check (verify) solutions, as follows
- example 7. verify that $\mathbf{X}(t) = \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-2t}$ is a solution of the linear system

$$\mathbf{X}' = egin{pmatrix} 1 & 3 \ 1 & -1 \end{pmatrix} \mathbf{X}$$

solution.

• example 8. verify that
$$\mathbf{X}(t) = \begin{pmatrix} -1 \\ -6 \\ 13 \end{pmatrix}$$
 is a solution of the linear system
 $\mathbf{X}' = \begin{pmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{pmatrix} \mathbf{X}$

linear independent solutions

- definition. if X₁(t), X₂(t),..., X_n(t) are linearly-independent then we say they form a *fundamental set*
- you can check linear independence by checking that the *Wronskian* is nonzero:

$$W(\mathbf{X}_{1}, \mathbf{X}_{2}, \dots, \mathbf{X}_{n}) = \det \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & & x_{2n} \\ \vdots & & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix} \neq 0$$

above uses notation for entries:

$$\mathbf{X}_{1} = \begin{pmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{pmatrix}, \mathbf{X}_{2} = \begin{pmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{n2} \end{pmatrix}, \dots, \mathbf{X}_{n} = \begin{pmatrix} x_{1n} \\ x_{2n} \\ \vdots \\ x_{nn} \end{pmatrix}$$

like #17 in §8.1

• *example 9.* determine whether the vectors (solutions) form a fundamental set:

$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-2t}, \quad \mathbf{X}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-6t}$$

solution.

expectations

to learn this material, just listening to a lecture is not enough

- read section 8.1
- do Homework 8.1
- in the next section (§8.4) we focus entirely on *homogeneous* systems