7.3 Laplace Transforms: translations \& unit step functions a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

the Laplace transform strategy

- need §7.3: "operational properties" esp. translations (shifts)
- including the unit step function $\mathcal{U}(t)$

recall Laplace's Transform

- the definition:

$$
\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

- when applying \mathcal{L} to an ODE use:

$$
\begin{aligned}
\mathcal{L}\left\{y^{\prime}(t)\right\} & =s Y(s)-y(0) \\
\mathcal{L}\left\{y^{\prime \prime}(t)\right\} & =s^{2} Y(s)-s y(0)-y^{\prime}(0)
\end{aligned}
$$

- doing \mathcal{L}^{-1} is mostly use of a table, e.g.:

$$
\begin{aligned}
& \text { - } \mathcal{L}^{-1}\left\{\frac{1}{s-4}\right\}=e^{4 t} \\
& \circ \mathcal{L}^{-1}\left\{\frac{k}{(s-a)^{2}+k^{2}}\right\}=e^{a t} \sin k t
\end{aligned}
$$

we have a decent table

Table of Laplace Transforms:

$$
\begin{array}{rlrl}
\mathcal{L}\{1\} & =\frac{1}{s} & \mathcal{L}\left\{t e^{a t}\right\} & =\frac{1}{(s-a)^{2}} \\
\mathcal{L}\{t\} & =\frac{1}{s^{2}} & \mathcal{L}\left\{t^{n} e^{a t}\right\} & =\frac{n!}{(s-a)^{n+1}} \\
\mathcal{L}\left\{t^{n}\right\} & =\frac{n!}{s^{n+1}} & \mathcal{L}\left\{e^{a t} \sin (k t)\right\} & =\frac{k}{(s-a)^{2}+k^{2}} \\
\mathcal{L}\left\{t^{-1 / 2}\right\} & =\frac{\sqrt{\pi}}{s^{1 / 2}} & \mathcal{L}\left\{e^{a t} \cos (k t)\right\} & =\frac{s-a}{(s-a)^{2}+k^{2}} \\
\mathcal{L}\left\{t^{1 / 2}\right\} & =\frac{\sqrt{\pi}}{2 s^{3 / 2}} & \mathcal{L}\{t \sin (k t)\} & =\frac{2 k s}{\left(s^{2}+k^{2}\right)^{2}} \\
\mathcal{L}\left\{t^{\alpha}\right\} & =\frac{\Gamma(\alpha+1)}{s^{\alpha+1}} & \mathcal{L}\{t \cos (k t)\} & =\frac{s^{2}-k^{2}}{\left(s^{2}+k^{2}\right)^{2}} \\
\mathcal{L}\left\{e^{a t}\right\} & =\frac{1}{s-a} \\
\mathcal{L}\{\sin (k t)\} & =\frac{k}{s^{2}+k^{2}} \\
\mathcal{L}\{\operatorname{Los}\{(k t)\} & =\frac{s}{s^{2}+k^{2}} \\
\mathcal{L}\{\operatorname{U}(t-a)\} & =\frac{F(s-a)}{s} \\
\mathcal{L}\{\sinh (k t)\} & =\frac{k}{s^{2}-k^{2}} \\
\mathcal{L}\{f(t-a) \mathcal{U}(t-a)\} & =e^{-a s} F(s) \\
\mathcal{L}\{g(t) \mathcal{U}(t-a)\} & =e^{-a s} \mathcal{L}\{g(t+a)\} \\
\mathcal{L}\left\{t^{n} f(t)\right\} & =(-1)^{n} \frac{d^{n}}{d s^{n}} F(s) \\
\mathcal{L}\left\{f^{(n)}(t)\right\}=s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)
\end{array}
$$

noticable in the table

- compare the left and right columns in this part of the table:

$$
\begin{aligned}
\mathcal{L}\{t\} & =\frac{1}{s^{2}} & \mathcal{L}\left\{t e^{a t}\right\} & =\frac{1}{(s-a)^{2}} \\
\mathcal{L}\left\{t^{n}\right\} & =\frac{n!}{s^{n+1}} & \mathcal{L}\left\{t^{n} e^{a t}\right\} & =\frac{n!}{(s-a)^{n+1}} \\
\mathcal{L}\{\sin (k t)\} & =\frac{k}{s^{2}+k^{2}} & \mathcal{L}\left\{e^{a t} \sin (k t)\right\} & =\frac{k}{(s-a)^{2}+k^{2}} \\
\mathcal{L}\{\cos (k t)\} & =\frac{s}{s^{2}+k^{2}} & \mathcal{L}\left\{e^{a t} \cos (k t)\right\} & =\frac{s-a}{(s-a)^{2}+k^{2}}
\end{aligned}
$$

- multiplying by $e^{a t}$ causes: $s \rightarrow s-a$
- this is a rule!: multiplying by an exponential in t is translation in s :

$$
\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

why?

- why does multiplying by $e^{a t}$ cause $s \rightarrow s-a$?
- recall definition:

$$
\mathcal{L}\{f(t)\}=F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

- so:

$$
\begin{aligned}
\mathcal{L}\left\{e^{a t} f(t)\right\} & =\int_{0}^{\infty} e^{-s t} e^{a t} f(t) d t=\int_{0}^{\infty} e^{-(s-a) t} f(t) d t \\
& =F(s-a)
\end{aligned}
$$

examples from $\S 7.3$

- start by just going back and forth using the new rule
- exercise 1.

$$
\mathcal{L}\left\{e^{2 t} \sin (3 t)\right\}=
$$

- exercise 2.

$$
\mathcal{L}^{-1}\left\{\frac{1}{s^{2}-6 s+10}\right\}=
$$

example like §7.3 \#23

- exercise 3. use \mathcal{L} to solve the ODE IVP:

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0, \quad y(0)=1, y^{\prime}(0)=1
$$

example like $\S 7.3 \# 30$

- exercise 4. use \mathcal{L} to solve the ODE IVP:

$$
y^{\prime \prime}-2 y^{\prime}+5 y=t, \quad y(0)=0, y^{\prime}(0)=7
$$

unit step function

- definition. the unit step function is

$$
\mathcal{U}(t)= \begin{cases}0, & t<0 \\ 1, & t \geq 0\end{cases}
$$

- the book defines it with a translation, and only on $[0, \infty)$

$$
\mathcal{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

- why? because we want to model "switching on" at time $t=a$

$\mathcal{U}(t-a)$ helps with switching on/off

write each function in terms of unit step function(s):

- example A.

$$
f(t)= \begin{cases}0, & 0 \leq t<1 \\ t^{2}, & t \geq 1\end{cases}
$$

- example B.

Laplace transform with $\mathcal{U}(t-a)$

- $\mathcal{U}(t)$ is also called the Heaviside function
- easy-to-show: if $F(s)=\mathcal{L}\{f(t)\}$ then

$$
\mathcal{L}\{f(t-a) \mathcal{U}(t-a)\}=e^{-a t} F(s)
$$

- show it:

Oliver Heaviside (1850-1925)

- exercise 5. write the function in terms of \mathcal{U} and then find the Laplace transform:

$$
f(t)= \begin{cases}0, & 0 \leq t<1 \\ t^{2}, & t \geq 1\end{cases}
$$

second version

- the book then says:

We are frequently confronted with the problem of finding the Laplace transform of a product of a function g and a unit step function $\mathcal{U}(t-a)$ where the function g lacks the precise shifted form $f(t-a)$ in Theorem 7.3.2.

- yup, that's our problem
- 2nd form of the same rule:

$$
\mathcal{L}\{g(t) \mathcal{U}(t-a)\}=e^{-a t} \mathcal{L}\{g(t+a)\}
$$

- it will be in the table also, when it is printed on quizzes/exams

once again

- exercise 5. write the function in terms of \mathcal{U} and then find the Laplace transform:

$$
f(t)= \begin{cases}0, & 0 \leq t<1 \\ t^{2}, & t \geq 1\end{cases}
$$

like \#66 in $\S 7.3$

- exercise 6. use Laplace transforms to solve the ODE IVP:

$$
y^{\prime \prime}+9 y=f(t), \quad y(0)=0, y^{\prime}(0)=0
$$

where $f(t)= \begin{cases}1, & 0 \leq t<1 \\ 0, & t \geq 1\end{cases}$

summary

- assume $\mathcal{L}\{f(t)\}=F(s)$
- 1st translation theorem.

$$
\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

- 2nd translation theorem. if $a>0$ then

$$
\mathcal{L}\{f(t-a) \mathcal{U}(t-a)\}=e^{-a s} F(s)
$$

- includes easy case: $\mathcal{L}\{\mathcal{U}(t-a)\}=\frac{e^{-a s}}{s}$
- second form

$$
\mathcal{L}\{g(t) \mathcal{U}(t-a)\}=e^{-a s} \mathcal{L}\{g(t+a)\}
$$

- these are all in the table you will get on quizzes and exams, so: goal is understanding not memorizing

expectations

to learn this material, just listening to a lecture is not enough

- read section 7.3
- you can ignore "beams" and example 10 in $\S 7.3$
- find good youtube videos on Laplace transforms and inverse Laplace transforms?
- do Homework 7.3

