7.2 inverse Laplace Transforms, and application to DEs
 a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

recall the definition

- the Laplace transform of a function $f(t)$ defined on $(0, \infty)$ is

$$
\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

- this is well defined for $s>c$ if $f(t)$ has exponential order c : $|f(t)| \leq M e^{c t}$
- the result of applying the Laplace transform is a function of s :

$$
\mathcal{L}\{f(t)\}=\mathcal{L}\{f\}(s)=F(s) \quad \longleftarrow \text { all mean the same }
$$

the Laplace transform strategy

- §7.2: practice with \mathcal{L}^{-1} then practice the whole strategy

bring a table to the party

Theorem 7.1.1 Transforms of Some Basic Functions

(a) $\mathscr{L}\{1\}=\frac{1}{s}$
(b) $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, n=1,2,3, \ldots$
(c) $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$
(d) $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}$
(e) $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}$
(f) $\mathscr{L}\{\sinh k t\}=\frac{k}{s^{2}-k^{2}}$
(g) $\mathscr{L}\{\cosh k t\}=\frac{s}{s^{2}-k^{2}}$

- on page 282 of book
- this table is pathetic! better one soon ...

first \mathcal{L}^{-1} example (like $\S 7.2 \# 5$)

- exercise 1. use algebra and a table of Laplace transforms:

$$
\mathcal{L}^{-1}\left\{\frac{(s-1)^{3}}{s^{4}}\right\}=
$$

\mathcal{L}^{-1} example like $\S 7.2 \# 11$

- exercise 2. use algebra and a table of Laplace transforms:

$$
\mathcal{L}^{-1}\left\{\frac{5}{s^{2}+36}\right\}=
$$

\mathcal{L}^{-1} example like $\S 7.2 \# 18$

- exercise 3. use algebra and a table of Laplace transforms:

$$
\mathcal{L}^{-1}\left\{\frac{s+1}{s^{2}-7 s}\right\}=
$$

not actually a better table

- compare Theorems 7.1.1 and 7.2.1
- they say the same thing!

Theorem 7.1.1 Transforms of Some Basic Functions

(a) $\mathscr{L}\{1\}=\frac{1}{s}$
(b) $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1} 1}, n=1,2,3, \ldots$
(c) $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$
(d) $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}$
(e) $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}$
(f) $\mathscr{L}\{\sinh k t\}=\frac{k}{s^{2}-k^{2}}$
(g) $\mathscr{L}\{\cosh k t\}=\frac{s}{s^{2}-k^{2}}$
(a) $1=\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}$
(b) $t^{n}=\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}, n=1,2,3, \ldots$
(c) $e^{a t}=\mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}$
(d) $\sin k t=\mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}$
(e) $\cos k t=\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}$
(f) $\sinh k t=\mathscr{L}^{-1}\left\{\frac{k}{s^{2}-k^{2}}\right\}$
(g) $\cosh k t=\mathscr{L}^{-1}\left\{\frac{s}{s^{2}-k^{2}}\right\}$

Table of Laplace Transforms:

actually a decent table

$$
\begin{array}{rlrl}
\mathcal{L}\{1\} & =\frac{1}{s} & \mathcal{L}\left\{t e^{a t}\right\} & =\frac{1}{(s-a)^{2}} \\
\mathcal{L}\{t\} & =\frac{1}{s^{2}} & \mathcal{L}\left\{t^{n} e^{a t}\right\} & =\frac{n!}{(s-a)^{n+1}} \\
\mathcal{L}\left\{t^{n}\right\} & =\frac{n!}{s^{n+1}} & \mathcal{L}\left\{e^{a t} \sin (k t)\right\} & =\frac{k}{(s-a)^{2}+k^{2}} \\
\mathcal{L}\left\{t^{-1 / 2}\right\} & =\frac{\sqrt{\pi}}{s^{1 / 2}} & \mathcal{L}\left\{e^{a t} \cos (k t)\right\} & =\frac{s-a}{(s-a)^{2}+k^{2}} \\
\mathcal{L}\left\{t^{1 / 2}\right\} & =\frac{\sqrt{\pi}}{2 s^{3 / 2}} & \mathcal{L}\{t \sin (k t)\} & =\frac{2 k s}{\left(s^{2}+k^{2}\right)^{2}} \\
\mathcal{L}\left\{t^{\alpha}\right\} & =\frac{\Gamma(\alpha+1)}{s^{\alpha+1}} & \mathcal{L}\{t \cos (k t)\} & =\frac{s^{2}-k^{2}}{\left(s^{2}+k^{2}\right)^{2}} \\
\mathcal{L}\left\{e^{a t}\right\} & =\frac{1}{s-a} \\
\mathcal{L}\{\sin (k t)\} & \left.=\frac{k}{s^{2}+e^{2}} f(t)\right\} & =F(s-a) \\
\mathcal{L}\{\cos (k t)\} & =\frac{s}{s^{2}+k^{2}} \\
\mathcal{L}\{\operatorname{U}(t-a)\} & =\frac{e^{-a s}}{s} \\
\mathcal{L}\{\sinh (k t)\} & =\frac{k}{s^{2}-k^{2}} \\
\mathcal{L}\{f(t-a) \mathcal{U}(t-a)\} & =e^{-a s} F(s) \\
\mathcal{L}\{g(t) \mathcal{U}(t-a)\} & =e^{-a s} \mathcal{L}\{g(t+a)\} \\
\mathcal{L}\left\{t^{n} f(t)\right\} & =(-1)^{n} \frac{d^{n}}{d s^{n}} F(s) \\
\mathcal{L}\left\{f^{(n)}(t)\right\}=s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)
\end{array}
$$

\mathcal{L}^{-1} example like $\S 7.2 \# 23$

- exercise 4. use algebra and a table of Laplace transforms:

$$
\mathcal{L}^{-1}\left\{\frac{s}{(s-3)(s-4)(s-6)}\right\}=
$$

$$
\frac{s}{(s-3)(s-4)(s-6)}=\frac{1}{s-3}-\frac{2}{s-4}+\frac{1}{s-6}
$$

\mathcal{L}^{-1} example like $\S 7.2 \# 25$

- exercise 5. use algebra and a table of Laplace transforms:

$$
\mathcal{L}^{-1}\left\{\frac{1}{s^{3}+7 s}\right\}=
$$

transform of first derivatives

- exercise 6. suppose $F(s)=\mathcal{L}\{f(t)\}$. use the definition of the Laplace transform to show: $\quad \mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$
- actually we showed this on $\S 7.1$ slides
- what assumptions did we make about $f(t)$?

transform of second derivatives

- exercise 7. suppose $F(s)=\mathcal{L}\{f(t)\}$. show:

$$
\mathcal{L}\left\{f^{\prime \prime}(t)\right\}=s^{2} F(s)-s f(0)-f^{\prime}(0)
$$

- in the table you'll have in hand during quizzes/exams:

$$
\mathcal{L}\left\{f^{(n)}(t)\right\}=s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)
$$

like $\S 7.2 \# 39$

- exercise 8. use Laplace transform to solve the ODE IVP:

$$
y^{\prime \prime}-5 y^{\prime}+4 y=0, \quad y(0)=1, y^{\prime}(0)=0
$$

the old way

- exercise 9. solve without Laplace transform:

$$
y^{\prime \prime}-5 y^{\prime}+4 y=0, \quad y(0)=1, y^{\prime}(0)=0
$$

like §7.2 \#41

- exercise 10. use Laplace transform to solve the ODE IVP:

$$
y^{\prime \prime}+y=\sqrt{2} \cos (\sqrt{2} t), \quad y(0)=0, y^{\prime}(0)=3
$$

like $\S 7.2 \# 41$, cont.

$$
y(t)=3 \sin (t)+\sqrt{2} \cos (t)-\sqrt{2} \cos (\sqrt{2} t)
$$

expectations

to learn this material, just listening to a lecture is not enough

- read section 7.2 (and 7.1 and 7.3)
- find good youtube videos on Laplace transforms and inverse Laplace transforms?
- do Homework 7.2

