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recall the definition

e the Laplace transform of a function f(t) defined on (0, 00) is
LA{f(t)} :/ e "t f(t) dt
0

o this is well defined for s > ¢ if f(t) has exponential order c:
f(t)] < Me!

e the result of applying the Laplace transform is a function of s:

LA{f(t)} = L{f}(s) = F(s) <— all mean the same



the Laplace transform strategy

old method
ODE IVP for y(t) f-------------- > y(t)=...
A
L Efl
Y
algebraic equation solve for Y

for Y(s)

e §7.2: practice with £7! then practice the whole strategy



bring a table to the party

m Transforms of Some Basic Functions
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e on page 282 of book
e this table is pathetic! better one soon ...



first £71 example (like §7.2 #5)

e exercise 1. use algebra and a table of Laplace transforms:
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L7 example like §7.2 #11

e exercise 2. use algebra and a table of Laplace transforms:

5
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L1 example like §7.2 #18

e exercise 3. use algebra and a table of Laplace transforms:
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not actually a better table

e compare Theorems 7.1.1 and 7.2.1

e they say the same thing!
Some Inverse Transforms
Transforms of Some Basic Functions
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TABLE OF LAPLACE TRANSFORMS:

actually a decent table

cy=1 £{tet) = (s_la)z
c(q:slz L{ﬁﬂﬁﬁ
oyl
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- e
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L1 example like §7.2 #23

e exercise 4. use algebra and a table of Laplace transforms:

51{(5_3)(554)(5_6)} -
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L7 example like §7.2 #25

e exercise 5. use algebra and a table of Laplace transforms:

1
1 _
£ {53—1—75}_




transform of first derivatives

e exercise 6. suppose F(s) = L{f(t)}. use the definition of the
Laplace transform to show: LA{f'(t)} =sF(s)— f(0)

e actually we showed this on §7.1 slides

e what assumptions did we make about f(t)?



transform of second derivatives

e exercise 7. suppose F(s) = L{f(t)}. show:

L{f"(t)} = s*F(s) — s f(0) — f'(0)

e in the table you'll have in hand during quizzes/exams:

E{f }_sF )= s"HF(0) — - - — F"D(0)



like §7.2 #39
e exercise 8. use Laplace transform to solve the ODE IVP:

y' =5y +4y =0, y(0)=1,y'(0)=0



the old way

e exercise 9. solve without Laplace transform:

y' =5y +4y =0, y(0)=1,y'(0)=0



like §7.2 #41

e exercise 10. use Laplace transform to solve the ODE IVP:

y"'+y =+v2cos(vV2t),  y(0)=0,y'(0)=3



like §7.2 #41, cont.

y(t) = 3sin(t) + V2 cos(t) — v/2 cos(v/2t)



expectations

to learn this material, just listening to a lecture is not enough
e read section 7.2 (and 7.1 and 7.3)

e find good youtube videos on Laplace transforms and inverse
Laplace transforms?

e do Homework 7.2



