7.1 Laplace Transforms (starting from the definition)
 a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

the definition

- the Laplace transform of a function $f(t)$ defined on $(0, \infty)$ is

$$
\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

- this is the book's notation
- the result of applying the Laplace transform is a function of s
- so slightly better notation would be

$$
\mathcal{L}\{f\}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

- a common (and good) way to write it is

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

why do we use \mathcal{L} in differential equations?

- why do we use

$$
\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

- because the Laplace transform converts a linear DE (in t) into an algebra problem (in s)
- this is especially useful for solving nonhomogeneous DEs
- ...it's how many engineers think about nonhomogeneous DEs
- the Laplace transform linear, that is,

$$
\begin{aligned}
\mathcal{L}\{f(t)+g(t)\} & =\mathcal{L}\{f(t)\}+\mathcal{L}\{g(t)\}, \text { and } \\
\mathcal{L}\{\alpha f(t)\} & =\alpha \mathcal{L}\{f(t)\}
\end{aligned}
$$

- the Laplace transform is basically limited to linear DEs

practice with integrals on $[a, \infty)$

- a Laplace transform is an integral $\int_{0}^{\infty} \ldots$
- we need practice!
- practice 1. compute

$$
\int_{2}^{\infty} e^{-3 t} d t=
$$

$$
=\frac{1}{3} e^{-6}
$$

- practice 2. compute and sketch

$$
\int_{1}^{\infty} \frac{1}{t} d t=
$$

practice integrals, cont.

- practice 3. compute and sketch

$$
\int_{0}^{\infty} t e^{-t} d t=
$$

$$
=+1
$$

Laplace transforms, from the definition

- the technique in Chapter 7 requires pre-computing the Laplace transforms of some familiar functions, and then using these to solve DEs
- example 1. compute $\mathcal{L}\left\{e^{k t}\right\}$
- example 2. compute $\mathcal{L}\{1\}$

from the definition, cont.

- example 3. compute $\mathcal{L}\{t\}$
- example 4. compute $\mathcal{L}\{\cos (k t)\}$

from the definition, cont. ${ }^{2}$

- example 5. compute $\mathcal{L}\left\{t^{n}\right\}$

$$
\begin{gathered}
\mathcal{L}\left\{t^{n}\right\}=\frac{n}{s} \mathcal{L}\left\{t^{n-1}\right\} \\
\Longrightarrow \mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}
\end{gathered}
$$

first table

Theorem 7.1.1 Transforms of Some Basic Functions

(a) $\mathscr{L}\{1\}=\frac{1}{s}$
(b) $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, n=1,2,3, \ldots$
(c) $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$
(d) $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}$
(e) $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}$
(f) $\mathscr{L}\{\sinh k t\}=\frac{k}{s^{2}-k^{2}}$
(g) $\mathscr{L}\{\cosh k t\}=\frac{s}{s^{2}-k^{2}}$

- you will have a table like this on quizzes and exams
- and it is a fair question to ask you to show any one from the definition

piecewise functions

- example 6. compute $\mathcal{L}\{f\}$ if

$$
f(t)= \begin{cases}0, & 0 \leq t<a \\ 1, & t>a\end{cases}
$$

$$
\mathcal{L}\{f\}=\frac{e^{-a s}}{s}
$$

key fact from $\S 7.2$

- example 7. let $Y(s)=\mathcal{L}\{y(t)\}$. use the definition to show

$$
\mathcal{L}\left\{y^{\prime}(t)\right\}=s Y(s)-y(0)
$$

an actual example

- so far, examples just compute $\mathcal{L}\{f(t)\}$ for particular $f(t)$, but they do not show how \mathcal{L} is actually used!
- example 8 . solve by using \mathcal{L} :

$$
y^{\prime}+5 y=t, y(0)=0
$$

$$
y(t)=\frac{1}{25}\left(e^{-5 t}-1\right)+\frac{t}{5}
$$

the old way, to check

- example 8^{\prime}. solve by using Chapter 2 methods:

$$
y^{\prime}+5 y=t, y(0)=0
$$

can you always compute \mathcal{L} ?

- your function $f(t)$ has to be defined on the interval $[0, \infty)$ so you can do the integral $\int_{0}^{\infty} e^{-s t} f(t) d t$
- even then, the function has to not blow-up too fast
- bad example. try to compute

$$
\mathcal{L}\left\{e^{t^{2}}\right\}=
$$

- the result may not be defined for all s
- example. explain why this result only makes sense for $s>7$:

$$
\mathcal{L}\left\{e^{7 t}\right\}=\frac{1}{s-7}
$$

can you always compute \mathcal{L} ? cont.

- definition. a function $f(t)$, defined on $[0, \infty)$, is of exponential order c if there are constants M and c so that

$$
|f(t)| \leq M e^{c t}
$$

for all t in $[0, \infty)$

Theorem
if $f(t)$ is piecewise continuous on $[0, \infty)$ and of exponential order c then $\mathcal{L}\{f(t)\}$ is defined for $s>c$

the Laplace transform strategy

- example 8 used this strategy
- we get serious about this strategy in $\S 7.2$ and $\S 7.3$

beating a dead DE ...

- by then end of this Chapter we will have a third good way of solving linear, constant-coefficient DEs:
Chapter 4 use auxiliary equation and undetermined coefficients
Chapter 6 use power series
Chapter 7 use Laplace transform
- both homogenous and nonhomogeneous
- all these methods use linearity ... they are not suited to nonlinear DEs
- only Chapter 6 methods are well-suited to variable coefficients
- and in Chapter 8 we will get one more method!

expectations

to learn this material, just listening to a lecture is not enough

- read section 7.1
- find good youtube videos on Laplace transforms?
- do Homework 7.1

