7.1 Laplace Transforms (starting from the definition) a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

for textbook: D. Zill, A First Course in Differential Equations with Modeling Applications, 11th ed.

the definition

• the Laplace transform of a function f(t) defined on $(0,\infty)$ is

$$\mathcal{L}\left\{f(t)\right\} = \int_0^\infty e^{-st} f(t) \, dt$$

• this is the book's notation

the result of applying the Laplace transform is a function of s
 so slightly better notation would be

$$\mathcal{L}\left\{f\right\}(s) = \int_0^\infty e^{-st} f(t) \, dt$$

a common (and good) way to write it is

$$F(s)=\int_0^\infty e^{-st}f(t)\,dt$$

why do we use \mathcal{L} in differential equations?

why do we use

$$\mathcal{L}\left\{f(t)\right\} = \int_0^\infty e^{-st} f(t) \, dt \quad ?$$

- because the Laplace transform converts a linear DE (in t) into an algebra problem (in s)
 - this is especially useful for solving *nonhomogeneous* DEs
 ... it's how many engineers think about nonhomogeneous DEs
 the Laplace transform *linear*, that is,

$$\begin{aligned} \mathcal{L}\left\{f(t) + g(t)\right\} &= \mathcal{L}\left\{f(t)\right\} + \mathcal{L}\left\{g(t)\right\}, \text{ and} \\ \mathcal{L}\left\{\alpha f(t)\right\} &= \alpha \mathcal{L}\left\{f(t)\right\} \end{aligned}$$

the Laplace transform is basically limited to linear DEs

practice with integrals on $[a,\infty)$

- a Laplace transform is an integral $\int_0^\infty \dots$
- we need practice!
- practice 1. compute

$$\int_2^\infty e^{-3t}\,dt =$$

 $=\frac{1}{3}e^{-6}$

• practice 2. compute and sketch

$$\int_1^\infty \frac{1}{t}\,dt =$$

practice integrals, cont.

• practice 3. compute and sketch

$$\int_0^\infty t e^{-t} \, dt =$$

= +1

Laplace transforms, from the definition

- the technique in Chapter 7 requires pre-computing the Laplace transforms of some familiar functions, and then using these to solve DEs
- example 1. compute $\mathcal{L}\left\{e^{kt}\right\}$

• example 2. compute \mathcal{L} {1}

from the definition, cont.

• example 3. compute $\mathcal{L}\left\{t\right\}$

• example 4. compute $\mathcal{L} \{ \cos(kt) \}$

from the definition, cont.²

• example 5. compute $\mathcal{L} \{t^n\}$

$$\mathcal{L} \{ t^n \} = \frac{n}{s} \mathcal{L} \{ t^{n-1} \}$$
$$\implies \mathcal{L} \{ t^n \} = \frac{n!}{s^{n+1}}$$

first table

Theorem 7.1.1 Transforms of Some Basic Functions

$$\begin{aligned} \text{(a)} \quad \mathscr{L}\{1\} &= \frac{1}{s} \\ \text{(b)} \quad \mathscr{L}\{t^n\} &= \frac{n!}{s^{n+1}}, n = 1, 2, 3, \dots \\ \text{(c)} \quad \mathscr{L}\{e^{at}\} &= \frac{1}{s-a} \\ \text{(d)} \quad \mathscr{L}\{\sin kt\} &= \frac{k}{s^2 + k^2} \\ \text{(e)} \quad \mathscr{L}\{\cos kt\} &= \frac{s}{s^2 + k^2} \\ \text{(f)} \quad \mathscr{L}\{\sinh kt\} &= \frac{k}{s^2 - k^2} \\ \text{(g)} \quad \mathscr{L}\{\cosh kt\} &= \frac{s}{s^2 - k^2} \end{aligned}$$

- you will have a table like this on quizzes and exams
- and it is a fair question to ask you to show any one from the definition

piecewise functions

• example 6. compute $\mathcal{L} \{f\}$ if

$$f(t) = egin{cases} 0, & 0 \leq t < a \ 1, & t > a \end{cases}$$

$$\mathcal{L}\left\{f\right\} = \frac{e^{-as}}{s}$$

key fact from §7.2

• example 7. let $Y(s) = \mathcal{L} \{y(t)\}$. use the definition to show

$$\mathcal{L}\left\{y'(t)\right\} = sY(s) - y(0)$$

an actual example

- so far, examples just compute L {f(t)} for particular f(t), but they do not show how L is actually used!
- *example 8*. solve by using \mathcal{L} :

$$y' + 5y = t, y(0) = 0$$

$$y(t) = \frac{1}{25}(e^{-5t}-1) + \frac{t}{5}$$

the old way, to check

• example 8'. solve by using Chapter 2 methods:

$$y' + 5y = t, y(0) = 0$$

can you always compute \mathcal{L} ?

- your function f(t) has to be defined on the interval $[0,\infty)$ so you can do the integral $\int_0^\infty e^{-st} f(t) dt$
- even then, the function has to not blow-up too fast
 - bad example. try to compute

$$\mathcal{L}\left\{e^{t^{2}}\right\} =$$

- the result may not be defined for all s
 - *example*. explain why this result only makes sense for s > 7:

$$\mathcal{L}\left\{\mathsf{e}^{7t}\right\} = \frac{1}{s-7}$$

can you always compute \mathcal{L} ? cont.

 definition. a function f(t), defined on [0,∞), is of exponential order c if there are constants M and c so that

 $|f(t)| \leq Me^{ct}$

for all t in $[0,\infty)$

Theorem

if f(t) is piecewise continuous on $[0,\infty)$ and of exponential order c then $\mathcal{L} \{f(t)\}$ is defined for s > c

the Laplace transform strategy

- example 8 used this strategy
- we get serious about this strategy in §7.2 and §7.3

beating a dead DE ...

• by then end of this Chapter we will have a *third* good way of solving linear, constant-coefficient DEs:

Chapter 4 use auxiliary equation and undetermined coefficients

Chapter 6 use power series

Chapter 7 use Laplace transform

- both homogenous and nonhomogeneous
- all these methods use linearity ... they are *not* suited to nonlinear DEs
- o only Chapter 6 methods are well-suited to variable coefficients
- o and in Chapter 8 we will get one more method!

expectations

to learn this material, just listening to a lecture is not enough

- read section 7.1
- find good youtube videos on Laplace transforms?
- do Homework 7.1