6.2 Series solutions about ordinary points a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

series solutions of DEs

- these slides contain three gory exercises solving linear, homogeneous 2nd-order DEs by power series methods
- two are DEs we could not previously solve
- recall the main idea of using series to solve DEs:
(1) substitute a series with unknown coefficients into the DE
(2) find coefficients by matching on either side
- see/do $\S 6.1$ first . . . or these slides will not make sense!

ordinary points

- in $\S 6.2$ we only use ordinary base points for our series:
definition. Assume $a_{2}(x), a_{1}(x), a_{0}(x)$ are continuous, smooth, and well-behaved functions. ${ }^{1}$ If $a_{2}\left(x_{0}\right) \neq 0$ then the point $x=x_{0}$ is an ordinary point of the DE

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

- we often write the same DE as

$$
y^{\prime \prime}+P(x) y^{\prime \prime}+Q(x) y=0
$$

where $P(x)=a_{1}(x) / a_{2}(x)$ and $Q(x)=a_{0}(x) / a_{2}(x)$

- $x=x_{0}$ is ordinary point if $P(x)$ and $Q(x)$ are analytic there
- ... don't divide by zero
- a point which is not ordinary is singular ... see $\S 6.3$ \& 6.4

[^0]
summation notation realization

- in these slides we do 2nd-order DEs only
- so consider y^{\prime} and $y^{\prime \prime}$:

$$
\begin{aligned}
y(x) & =c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots=\sum_{n=0}^{\infty} c_{n} x^{n}=\sum_{k=0}^{\infty} c_{k} x^{k} \\
y^{\prime}(x) & =c_{1}+2 c_{2} x+3 c_{3} x^{2}+\cdots=\sum_{n=0}^{\infty} n c_{n} x^{n-1}=\sum_{k=0}^{\infty}(k+1) c_{k+1} x^{k} \\
y^{\prime \prime}(x) & =2 c_{2}+3(2) c_{3} x+\cdots=\sum_{n=0}^{\infty} n(n-1) c_{n} x^{n-2} \\
& =\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}
\end{aligned}
$$

- these forms make summation notation an effective tool!

an Airy equation

exercise 1. find the general solution by series:

$$
y^{\prime \prime}+x y=0
$$

$2 \cdot 1 \cdot c_{2}=0$
$3 \cdot 2 \cdot c_{3}=-c_{0}$
$4 \cdot 3 \cdot c_{4}=-c_{1}$
$5 \cdot 4 \cdot c_{5}=-c_{2}$
$6 \cdot 5 \cdot c_{6}=-c_{3}$
$7 \cdot 6 \cdot c_{7}=-c_{4}$
\vdots

exercise 1, cont.

$$
\begin{array}{|l}
y_{1}(x)=1-\frac{1}{3 \cdot 2} x^{3}+\frac{1}{6 \cdot 5 \cdot 3 \cdot 2} x^{6}-\frac{1}{9 \cdot 8 \cdot 6 \cdot 5 \cdot 3 \cdot 2} x^{9}+\ldots \\
y_{2}(x)=x-\frac{1}{4 \cdot 3} x^{4}+\frac{1}{7 \cdot 6 \cdot 4 \cdot 3} x^{7}-\frac{1}{10 \cdot 9 \cdot 7 \cdot 6 \cdot 4 \cdot 3} x^{10}+\ldots \\
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\end{array}
$$

exercise 1, cont. ${ }^{2}$

- what do these Airy ${ }^{2}$ functions look like?
- I wrote a code to plot approximations to $y_{1}(x), y_{2}(x)$
- ... by summing first twenty terms of the series
- Airy functions smoothly connect a kind of exponential growth (left side of figure) to sinusoid-ish stuff (right side)

$$
y^{\prime \prime}+x y=0
$$

[^1]
we already know how to solve it!

exercise 2. $\quad y^{\prime \prime}+3 y^{\prime}-4 y=0, \quad y(0)=1, \quad y^{\prime}(0)=1$
(a) solve the IVP by any means you want

exercise 2, cont.

(b) solve it by series $\quad\left[y^{\prime \prime}+3 y^{\prime}-4 y=0, y(0)=1, y^{\prime}(0)=1\right]$
$2 \cdot 1 c_{2}+3 \cdot 1 c_{1}-4 c_{0}=0$
$3 \cdot 2 c_{3}+3 \cdot 2 c_{2}-4 c_{1}=0$
$4 \cdot 3 c_{4}+3 \cdot 3 c_{3}-4 c_{2}=0$
$5 \cdot 4 c_{5}+3 \cdot 4 c_{4}-4 c_{3}=0$
\vdots

exercise 2, cont. ${ }^{2}$

$$
y(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{3 \cdot 2} x^{3}+\frac{1}{4 \cdot 3 \cdot 2} x^{4}+\cdots=e^{x}
$$

get radius of convergence in advance

- when you find a series solution you can then use the ratio test (etc.) to determine radius of convergence R
- ... but this is unwise!
- Theorem 6.2.1 on page 245 tells us that
a minimum for R is the distance, in the complex plane, from the basepoint $x=x_{0}$ to the nearest singular point
- $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$: anywhere $a_{2}(x)=0$ is a singular point
- $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$: anywhere $P(x)$ or $Q(x)$ is not analytic is a singular point

like $\# 2$ in $\S 6.2$

exercise 3. (a) without actually solving the DE, find the minimum radius of convergence of the power series solutions about $x=0$:

$$
\left(x^{2}+1\right) y^{\prime \prime}-6 y=0
$$

(b) same, but about $x=2$

exercise 3, cont.

(c) find two series solutions about $x=0:\left(x^{2}+1\right) y^{\prime \prime}-6 y=0$

$2 \cdot 1 c_{2}-6 c_{0}=0$
$3 \cdot 2 c_{3}-6 c_{1}=0$
$2 \cdot 1 c_{2}+4 \cdot 3 c_{4}-6 c_{2}=0$
$3 \cdot 2 c_{3}+5 \cdot 4 c_{5}-6 c_{3}=0$
$4 \cdot 3 c_{4}+6 \cdot 5 c_{6}-6 c_{4}=0$
\vdots

exercise 3 , cont. ${ }^{2}$

$$
\begin{gathered}
y_{1}(x)=1+\frac{6}{2 \cdot 1} x^{2}+\frac{(6-2 \cdot 1)(6)}{4!} x^{4}+\frac{(6-4 \cdot 3)(6-2 \cdot 1)(6)}{6!} x^{6}+\ldots \\
y_{2}(x)=x+\frac{6}{3 \cdot 2} x^{3}+\frac{(6-3 \cdot 2)(6)}{5!} x^{5}+\frac{(6-5 \cdot 4)(6-3 \cdot 2)(6)}{7!} x^{7}+\ldots \\
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\end{gathered}
$$

was this progress?

- yes, we can solve more DEs than we could before
- we have escaped from $\S 4.3$ constant-coefficient DEs
- but, to understand what you get, you must spend quality time with series-defined functions $y_{1}(x)=\ldots$ and $y_{2}(x)=\ldots$
- this is worthwhile in some famous cases:

$$
\begin{array}{rlrr}
y^{\prime \prime}-x y=0 & \Longrightarrow & \text { Airy functions } \\
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0 & \Longrightarrow & \text { Bessel functions } \\
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+\alpha^{2} y=0 & \Longrightarrow & \text { Chebyshev functions }
\end{array}
$$

- i.e. special functions

historical comment

- from about 1800 to 1950 , finding new series solutions to DEs was the kind of thing that mathematicians and physicists did for a living
- you could get your name on some new special functions!
- e.g. Bessel, Legendre, Airy, Hermite, ... §6.4
- with powerful computers and software (since 1980?) one may/should automate the creation of series solutions
- thus the invention of Mathematica and then Wolfram Alpha
- naming new special functions is no longer a thing
- the quality of approximations remains a thing

expectations

to learn this material, just listening to a lecture is not enough

- read section 6.2
- find good youtube videos on power series, for example this one from 3blue1brown:
www. youtube.com/watch?v=3d6DsjIBzJ4
- do Homework 6.2
- we will skip $\S 6.3$ \& 6.4

[^0]: ${ }^{1}$ Precisely: analytic functions.

[^1]: ${ }^{2}$ George Airy was an astronomer: en.wikipedia.org/wiki/Airy_function.

