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series solutions of DEs

• these slides contain three gory exercises solving linear,
homogeneous 2nd-order DEs by power series methods

◦ two are DEs we could not previously solve

• recall the main idea of using series to solve DEs:

1 substitute a series with unknown coefficients into the DE
2 find coefficients by matching on either side

• see/do §6.1 first . . . or these slides will not make sense!



ordinary points

• in §6.2 we only use ordinary base points for our series:

definition. Assume a2(x), a1(x), a0(x) are continuous,
smooth, and well-behaved functions.1 If a2(x0) ̸= 0 then
the point x = x0 is an ordinary point of the DE

a2(x)y
′′ + a1(x)y

′ + a0(x)y = 0

• we often write the same DE as

y ′′ + P(x)y ′′ + Q(x)y = 0

where P(x) = a1(x)/a2(x) and Q(x) = a0(x)/a2(x)

◦ x = x0 is ordinary point if P(x) and Q(x) are analytic there
◦ . . . don’t divide by zero

• a point which is not ordinary is singular . . . see §6.3 & 6.4

1Precisely: analytic functions.



summation notation realization

• in these slides we do 2nd-order DEs only

• so consider y ′ and y ′′:

y(x) = c0 + c1x + c2x
2 + c3x

3 + · · · =
∞∑
n=0

cnx
n =

∞∑
k=0

ckx
k

y ′(x) = c1 + 2c2x + 3c3x
2 + · · · =

∞∑
n=0

ncnx
n−1 =

∞∑
k=0

(k + 1)ck+1x
k

y ′′(x) = 2c2 + 3(2)c3x + · · · =
∞∑
n=0

n(n − 1)cnx
n−2

=
∞∑
k=0

(k + 2)(k + 1)ck+2x
k

• these forms make summation notation an effective tool!



an Airy equation

exercise 1. find the general solution by series:

y ′′ + xy = 0

2 · 1 · c2 = 0
3 · 2 · c3 = −c0
4 · 3 · c4 = −c1
5 · 4 · c5 = −c2
6 · 5 · c6 = −c3
7 · 6 · c7 = −c4

...



exercise 1, cont.

y1(x) = 1− 1

3 · 2
x3 +

1

6 · 5 · 3 · 2
x6 − 1

9 · 8 · 6 · 5 · 3 · 2
x9 + . . .

y2(x) = x − 1

4 · 3
x4 +

1

7 · 6 · 4 · 3
x7 − 1

10 · 9 · 7 · 6 · 4 · 3
x10 + . . .

y(x) = c1y1(x) + c2y2(x)



exercise 1, cont.2

• what do these Airy2 functions look like?
◦ I wrote a code to plot approximations to y1(x), y2(x)
◦ . . . by summing first twenty terms of the series

• Airy functions smoothly connect a kind of exponential growth
(left side of figure) to sinusoid-ish stuff (right side)

y ′′ + xy = 0
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2George Airy was an astronomer: en.wikipedia.org/wiki/Airy function.

https://en.wikipedia.org/wiki/Airy_function


we already know how to solve it!

exercise 2. y ′′ + 3y ′ − 4y = 0, y(0) = 1, y ′(0) = 1

(a) solve the IVP by any means you want



exercise 2, cont.

(b) solve it by series
[

y ′′ + 3y ′ − 4y = 0, y(0) = 1, y ′(0) = 1
]

2 · 1c2 + 3 · 1c1 − 4c0 = 0
3 · 2c3 + 3 · 2c2 − 4c1 = 0
4 · 3c4 + 3 · 3c3 − 4c2 = 0
5 · 4c5 + 3 · 4c4 − 4c3 = 0

...



exercise 2, cont.2

y(x) = 1 + x + 1
2
x2 + 1

3·2x
3 + 1

4·3·2x
4 + · · · = ex



get radius of convergence in advance

• when you find a series solution you can then use the ratio test
(etc.) to determine radius of convergence R

• . . . but this is unwise!

• Theorem 6.2.1 on page 245 tells us that

a minimum for R is the distance, in the complex plane,
from the basepoint x = x0 to the nearest singular point

◦ a2(x)y
′′ + a1(x)y

′ + a0(x)y = 0: anywhere a2(x) = 0 is a
singular point

◦ y ′′ + P(x)y ′ + Q(x)y = 0: anywhere P(x) or Q(x) is not
analytic is a singular point



like #2 in §6.2

exercise 3. (a) without actually solving the DE, find the minimum
radius of convergence of the power series solutions about x = 0:

(x2 + 1)y ′′ − 6y = 0

(b) same, but about x = 2

2

+i

-i



exercise 3, cont.

(c) find two series solutions about x = 0: (x2 + 1)y ′′ − 6y = 0

2 · 1c2 − 6c0 = 0
3 · 2c3 − 6c1 = 0

2 · 1c2 + 4 · 3c4 − 6c2 = 0
3 · 2c3 + 5 · 4c5 − 6c3 = 0
4 · 3c4 + 6 · 5c6 − 6c4 = 0

...



exercise 3, cont.2

y1(x) = 1 +
6

2 · 1x
2 +

(6− 2 · 1)(6)
4!

x4 +
(6− 4 · 3)(6− 2 · 1)(6)

6!
x6 + . . .

y2(x) = x +
6

3 · 2x
3 +

(6− 3 · 2)(6)
5!

x5 +
(6− 5 · 4)(6− 3 · 2)(6)

7!
x7 + . . .

y(x) = c1y1(x) + c2y2(x)



was this progress?

• yes, we can solve more DEs than we could before

◦ we have escaped from §4.3 constant-coefficient DEs

• but, to understand what you get, you must spend quality time
with series-defined functions y1(x) = . . . and y2(x) = . . .

• this is worthwhile in some famous cases:

y ′′ − xy = 0 =⇒ Airy functions

x2y ′′ + xy ′ + (x2 − ν2)y = 0 =⇒ Bessel functions

(1− x2)y ′′ − xy ′ + α2y = 0 =⇒ Chebyshev functions

...

• i.e. special functions



historical comment

• from about 1800 to 1950, finding new series solutions to DEs
was the kind of thing that mathematicians and physicists did
for a living

◦ you could get your name on some new special functions!
◦ e.g. Bessel, Legendre, Airy, Hermite, . . . §6.4

• with powerful computers and software (since 1980?) one
may/should automate the creation of series solutions

◦ thus the invention of Mathematica and then Wolfram Alpha
◦ naming new special functions is no longer a thing
◦ the quality of approximations remains a thing

https://www.wolframalpha.com/


expectations

to learn this material, just listening to a lecture is not enough

• read section 6.2

• find good youtube videos on power series, for example this
one from 3blue1brown:

www.youtube.com/watch?v=3d6DsjIBzJ4

• do Homework 6.2

• we will skip §6.3 & 6.4

https://www.youtube.com/@3blue1brown
https://www.youtube.com/watch?v=3d6DsjIBzJ4

