6.1 Power series solutions of DEs
 (and review)
 a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

we already use power series

- the exponential function is defined by an infinite power series:

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\ldots
$$

- there are other ways to define it, but via series is the default
- see characterizations of the exponential function at wikipedia
- generally, a power series is an infinite sum of coefficients times powers of x
- exercise. from the above series for $y(x)=e^{x}$, show

$$
y^{\prime}=y \quad \text { and } \quad y(0)=1
$$

a series with unknown coefficients

exercise. find the coefficients in the power series

$$
y(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\ldots
$$

so that $y(x)$ solves the IVP:

$$
y^{\prime}+3 y=0, \quad y(0)=7
$$

series solutions of DEs: the basic idea

substitute a series with unknown coefficients into the $D E$, and thereby find the coefficients

- appropriate initial conditions will yield one series solution
- without initial conditions one gets a family of series solutions, the general solution

exercise \#37 in §6.1

exercise. find the general solution by using a power series with unknown coefficients:

$$
y^{\prime}=x y
$$

review of series

- you already have the main idea ... but reviewing series would be wise
- recall from calculus II:
(1) some familiar series
- including little tricks for fiddling with familiar series to get other series
(2) how summation notation works
- including shifting the index of summation
(3) what are the radius of convergence and the interval of convergence, and how to find them
- I'll do some reviewing in these slides, but ...
- to do your review, read the text in section 6.1!

exponential and related series

- we know that for any x,

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

- $0!=1$ and $1!=1$ by definition
- factorial n ! grows faster than b^{n} for any $b \ldots$ why? so what?
- split even and odd terms:
$\cosh x=$
$\sinh x=$
- $\cosh x=\frac{e^{x}+e^{-x}}{2}, \quad \sinh x=\frac{e^{x}-e^{-x}}{2}$
- use $e^{i \theta}=\cos \theta+i \sin \theta$:

$$
\cos x=
$$

$$
\sin x=
$$

geometric series

- recall:

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots=\sum_{n=0}^{\infty} x^{n}
$$

- why?
- for which x ?

related to geometric series

- geometric series for $x \in(-1,1)$:

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots=\sum_{n=0}^{\infty} x^{n}
$$

- substitution gives other series:

$$
\frac{1}{1+x^{2}}=
$$

- integration gives other series:

$$
\ln (1+x)=
$$

$\arctan (x)=$

familiar series worth knowing

- ... I've explained all 8 of these series!

Interval of
Maclaurin Series
Convergence

$$
\begin{gather*}
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n} \\
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \\
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \\
\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1} \tag{2}\\
\cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty} \frac{1}{(2 n)!} x^{2 n} \\
\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n+1} \\
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n} \\
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}
\end{gather*}
$$

exercise \#14 in §6.1

exercise. Use a familiar series to find the Maclaurin series of the given function. Write your answer in summation notation.

$$
f(x)=\frac{x}{1+x^{2}}
$$

base point

- a general power series is

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots
$$

- a is the base point; the series is centered at a
- note that $f(a)=c_{0}$
- generally: $c_{n}=\frac{f^{(n)}(a)}{n!}$
- exercise. find the power series centered at $a=5$:

$$
f(x)=\sin (2 x)
$$

convergence of power series

- fact. for the series there is a value $0 \leq R \leq \infty$ where the series converges if $a-R<x<a+R$ and it diverges if $x<a-R$ or $x>a+R$
- equivalently " $|x-a|<R$ " and " $|x-a|>R$ " resp.
- exercise. substitute $x= \pm 1$ into

$$
\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}
$$

do the resulting series converge?

exercise \#5 in §6.1

exercise. Find the interval and radius of convergence:

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{10^{k}}(x-5)^{k}
$$

- using ratio test:
- using geometric series:

exercise \#31 in §6.1

exercise. Verify by substitution that the given power series is a solution; use summation notation. Radius of convergence?

$$
y=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{2 n}, \quad y^{\prime}+2 x y=0
$$

exercise \#31, cont.

expectations

to learn this material, just listening to a lecture is not enough

- read sections 6.1 and 6.2
- find good youtube videos on power series, for example this one from 3blue1brown:
www. youtube.com/watch?v=3d6DsjIBzJ4
- do Homework 6.1

