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outline

examples of nonlinear 2nd-order differential equations (DEs):

• pendulum (§5.3)

◦ using a numerical solver in Matlab (see §4.10)

• hard and soft springs (§5.3)

• non-constant gravity: from earth to high orbit (§5.3)

• dependent variable missing (§4.10)



nonlinear pendulum

• suppose a pendulum oscillates (swings
back and forth) without resistance

• because it oscillates it must be modeled
by a 2nd-order linear DE

◦ approximately linear for small oscillations
◦ for bigger oscillations (> 20◦?) a

nonlinear model is more accurate

• from the diagram:

mℓ
d2θ

dt2
= −mg sin θ

◦ you are not responsible for the derivation

◦ but: s = ℓθ is arclength, so ℓ d
2θ

dt2 is
acceleration, and only the tangential
force causes motion



linear small angle model

• divide by mℓ and move term:
d2θ

dt2
+

g

ℓ
sin θ = 0

• if ω =

√
g

ℓ
then

d2θ

dt2
+ ω2 sin θ = 0 for any angle

• recall sin θ ≈ θ for small θ because sin z = z − z3

3! +
z5

5! − . . .

• a small-angle model:

d2θ

dt2
+ ω2θ = 0

◦ small-angle solution:
θ(t) = c1 cos(ωt) + c2 sin(ωt)



nonlinear versus linearized pendulum

nonlinear: any angles linearized: small angles

θ′′ + ω2 sin θ = 0 θ′′ + ω2θ = 0

solution? θ(t) = c1 cos(ωt) + c2 sin(ωt)

• ω =
√

g/ℓ in both DEs

• we do not know how to solve a nonlinear DE like this
pendulum

◦ the term sin θ is not linear: sin(a+ b) ̸= sin(a) + sin(b)



what to do about a nonlinear DE?

• for example, the pendulum DE: θ′′ + ω2 sin θ = 0

• what to do about a nonlinear equation like this?

◦ θ = ert is not a solution for any r (real or complex)

1. read section 4.10 ←− gives advice, not a method

2. use concept of energy

◦ makes progress (up-coming worksheet)
◦ but we just get a 1st-order DE which we might be unsolveable

3. use infinite series

◦ makes progress (Chapter 6)
◦ but only gives approximations

4. numerical approximations

◦ Euler’s method is just first of many such methods
◦ more in Chapter 9
◦ requires a specific IVP
◦ example next: using an efficient “black box” solver in Matlab



systems of 1st-order ODEs

need this idea:
a 2nd-order ODE is equivalent to a system of 1st-order ODEs

Example. convert into a 1st-order system:

x ′′ + 5(x ′)2 + sin x =
√
t

Solution. Second derivative x ′′(t) is merely the derivative of x ′(t).
So give x ′ a name:

y = x ′.

Now rewrite ∗ using y :

y ′ + 5y2 + sin x =
√
t.

Rearrange above two equations to a system:

x ′ = y

y ′ = −5y2 − sin x +
√
t



pendulum as a 1st-order system

exercise. convert into a 1st-order system with initial conditions:

θ′′ + ω2 sin θ = 0, θ(0) = A, θ′(0) = B

solution.

z ′1 = z2
z ′2 = −ω2 sin(z1)

,
z1(0) = A
z2(0) = B



using black-box solver ode45

• before we get to numerical solutions of systems, let’s do a
single 1st-order IVP

• use Matlab or Octave on your own computer or online

example. solve for y(t) on 0 ≤ t ≤ 2, and estimate y(2):

y ′ = −3y + e−t , y(0) = 1

solution. the DE is y ′ = f (t, y) so

>> f = @(t,y) -3*y + exp(-t);

>> [tt,yy] = ode45(f,[0,2],1);

>> plot(tt,yy)

>> yy(end)

ans = 0.068908
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only 12 steps, but accurate

• the ode45 black-box is quite accurate

• exercise. solve by hand for the exact value y(2):

y ′ = −3y + e−t , y(0) = 1

solution.

• compare to y(end)=y(13) on previous slides:

>> 0.5*(exp(-2)+exp(-6))

ans = 0.068907

• Euler would need 105 or 106 steps for this accuracy



calling ode45

• from the Matlab documentation page on ode45:

[t,y] = ode45(odefun,tspan,y0),

where tspan = [t0 tf], integrates the system of differ-
ential equations y ′ = f (t, y) from t0 to tf with initial
conditions y0. Each row in the solution array y corre-
sponds to a value returned in column vector t.

• see the above Matlab page for examples of functions f (t, y)
for the odefun argument

• note further fine print about the tspan argument:
◦ If tspan has two elements [t0 tf] then the solver returns the

solution evaluated at internal integration steps in the interval.
◦ If tspan has more than two elements [t0,t1,t2,...,tf] then the

solver returns the solution evaluated at the given points.

https://www.mathworks.com/help/matlab/ref/ode45.html


ode45 for pendulum
example. let ω =

√
7. solve for θ(t) on the interval t ∈ [0, 20]:

θ′′ + ω2 sin θ = 0, θ(0) = 3, θ′(0) = 0

solution. z1 = θ and ω2 = 7 so

z ′1 = z2 z1(0) = 3

z ′2 = −7 sin(z1) z2(0) = 0

This is z ′ = f (t, z) so:

>> f = @(t,z) [z(2); -7*sin(z(1))];

>> [tt,zz] = ode45(f,[0,20],[3;0]);

>> plot(tt,zz)

>> xlabel t

>> legend(’\theta(t)’,’d\theta/dt’)
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pendulum: better and movier

• the solution is more accurate than it looks!

• for better appearance, generate more points (below):

>> [tt,zz] = ode45(f,[0:.01:20],[3;0]);

>> plot(tt,zz), xlabel t

• one can also make a movie

◦ see pendmovie.m at the public Codes tab
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https://bueler.github.io/math302/assets/codes/S19/pendmovie.gif
https://bueler.github.io/math302/assets/codes/F23/pendmovie.m
https://bueler.github.io/math302/codes.html


back to linear mass-spring

example. solve for x(t) on the interval t ∈ [0, 20]:

x ′′ + 7x = 0, x(0) = 3, x ′(0) = 0

exact solution.

x(t) = 3 cos(
√
7t)

continuing previous code:

>> plot(tt,zz(:,1),’b’,tt,3*cos(sqrt(7)*tt),’g’)

>> xlabel t

>> legend(’nonlinear \theta(t)’,’linear x(t)’)
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linear mass-spring: exact vs. numerical
• this is a good case on which to check accuracy

• example. find x(20):

x ′′ + 7x = 0, x(0) = 3, x ′(0) = 0

exact solution. x(20) = 3 cos(
√
7(20)) = −2.6441

numerical solution. z1 = x and z2 = x ′ so

z ′1 = z2 z1(0) = 3

z ′2 = −7z1 z2(0) = 0

>> fl = @(t,z) [z(2); -7*z(1)];

>> [ttl,zzl] = ode45(fl,[0:.01:20],[3;0]);

>> zzl(end,1)

ans = -2.6492

• what about plots of the exact and numerical solutions?
◦ you won’t see difference: x(t) = 3 cos(

√
7t) versus zzl(:,1)



nonlinear springs

• springs are usually well-modeled by
Hooke’s law F (x) = −kx for small
displacements x from the equilibrium
position

• . . . but when they are over-extended,
or closed coil, etc. then they need
different models mx ′′ = F (x)
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exercise #9: (numerical) nonlinear spring
• so F (x) = −x − x3 is a hard spring model

• suppose we also have damping (thus x(t)→ 0 as t →∞)

exercise #9 in §5.3: numerically solve

d2x

dt2
+

dx

dt
+ x + x3 = 0, x(0) = −3, x ′(0) = 8

solution: write as system using x = z1, x
′ = z2:

z ′1 = z2 z1(0) = −3
z ′2 = −z2 − z1 − z31 z2(0) = 8

and use ode45:
>> f = @(t,z) [z(2); -z(2)-z(1)-z(1)^3];

>> [tt,zz] = ode45(f,[0:.01:5],[-3;8]);

>> plot(tt,zz), xlabel t, grid on

>> legend(’x(t)’,’dx/dt’)
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bullet to geosynchronous orbit

example. We want to use a bullet weighting 100 grams to destroy a
satellite in geosynchronous (geostationary) orbit, approximately 36000
km. What velocity is needed if we ignore air drag?

solution. Constant gravity g will not do. The gravity decreases
as the bullet rises. §5.3 states Newton’s law of gravitation:

my ′′ = −kMm

y2
where m =(bullet mass), M =(earth mass)

After simplification (see text), and with initial conditions, this is

y ′′ = −g R
2

y2
, y(0) = R, y ′(0) = V

We take R = 6.4× 106 m =(radius of earth) and g = 9.8. (Note bullet
mass does not matter. Earth’s mass is built into g .)

The Question: Find V so that the maximum of y(t) solving the above
IVP is 3.6× 107 m.



bullet to geosynchronous orbit 2
question: Find V so max y(t) = 3.6× 107, given

y ′′ = −g R
2

y2
, y(0) = R, y ′(0) = V

and R = 6.4× 106 m =(radius of earth) and g = 9.8
solution?: as system with y = z1, y

′ = z2 and C = gR2:

z ′1 = z2 z1(0) = R

z ′2 = −Cz−2
1 z2(0) = V

>> g = 9.8; R = 6.4e6; C = g*R^2;

>> f = @(t,z) [z(2); -C/z(1)^2];

>> V = 5000;

>> [tt,zz] = ode45(f,[0,1000],[R;V]);

>> plot(tt,zz(:,1))

>> xlabel t, ylabel y

>> max(zz(:,1))

ans = 7.9924e+06
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bullet to geosynchronous orbit 3

• trial and error needed!

• I finished with:
>> V = 10157; [tt,zz] = ode45(f,[0,20000],[R;V]);

>> [max(zz(:,1)) zz(end,1)]

ans =

3.60120e+07 2.36604e+07

a bit of hard-earned extra credit for any of these:

1 energy methods allow you to solve the above problem by hand; see
upcoming worksheet on how to do it,

2 but on the other hand one can add air drag by a reasonable model
and use the same numerical method from Matlab; do so

3 given air drag from 2 , will the bullet survive the heating?
(ablative ceramic-coated tungsten bullet?)

◦ this will need another DE coupled to the first



how the black box works

• how does the black box ode45 work?

◦ good question!

• basically: it is just a fancier form of Euler’s method

• more thoroughly:

◦ it uses a pair of Runge-Kutta methods
◦ . . . so it can adaptively choose its step size
◦ see the Matlab reference page for ode45
◦ covered in Chapter 9

https://en.wikipedia.org/wiki/Runge_Kutta_methods
https://www.mathworks.com/help/matlab/ref/ode45.html


dependent variable missing

• there are by-hand solvable nonlinear 2nd-order DEs:

DE technique first integral

y ′′ = f (t, y , y ′) too general

y ′′ = f (t) just antidifferentiate y ′ = F (t) + c
where F (t) =

∫
f (t) dt

y ′′ = f (y) compute energy 1
2 (y

′)2 + P(y) = c
[worksheet] where P(z) = −

∫
f (z) dz

y ′′ = f (y ′) substitute u = y ′ Q(y ′) = t + c

[§4.10] where Q(u) =
∫

du
f (u)

• last category called “dependent variable y is missing” (§4.10)

• you can often solve by the substitution u = y ′

◦ this can sometimes work for y ′′ = f (t, y ′) too



exercise #6 in §4.10

exercise. find the general solution:

e−ty ′′ = (y ′)2



expectations

to learn this material, just listening to a lecture is not enough

• read section 4.10 in the textbook

◦ skip the “Use of Taylor series” material . . . we’ll get to it later

• read section 5.3 in the textbook

◦ you can safely skip the material on “Telephone wires”
(boundary value problems are not covered in Math 302)

• take the whole thing seriously by going and finding some good
youtube videos etc. on ODE simulations

• do Homework 5.3


