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outline

examples of nonlinear 2nd-order differential equations (DEs):
e pendulum (§5.3)
o using a numerical solver in MATLAB (see §4.10)

e hard and soft springs (§5.3)
e non-constant gravity: from earth to high orbit (§5.3)
e dependent variable missing (§4.10)



nonlinear pendulum

e suppose a pendulum oscillates (swings
back and forth) without resistance
e because it oscillates it must be modeled
by a 2nd-order linear DE 0
o approximately linear for small oscillations
o for bigger oscillations (> 20°7) a
nonlinear model is more accurate

e from the diagram:
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o you are not responsible for the derivation

o but: s = ¢6 is arclength, so Zdtz is
acceleration, and only the tangential
force causes motion



linear small angle model
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o small-angle solution:
0(t) = c1 cos(wt) + ¢ sin(wt)
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nonlinear versus linearized pendulum

nonlinear: any angles linearized: small angles
0" + w?sin =0 0" + w0 =0
solution? 0(t) = c1 cos(wt) + o sin(wt)

e w=/g/t in both DEs

e we do not know how to solve a nonlinear DE like this
pendulum

o the term sin@ is not linear: sin(a + b) # sin(a) + sin(b)



what to do about a nonlinear DE?

for example, the pendulum DE: 0" 4 w?sinf =0
what to do about a nonlinear equation like this?
o 6 = e is not a solution for any r (real or complex)

. read section 4.10  <— gives advice, not a method

. use concept of energy

o makes progress (up-coming worksheet)

o but we just get a 1st-order DE which we might be unsolveable
. use infinite series

o makes progress (Chapter 6)

o but only gives approximations

. numerical approximations

Euler's method is just first of many such methods

more in Chapter 9

requires a specific IVP

example next: using an efficient “black box" solver in MATLAB

O O O O



systems of 1st-order ODEs

need this idea:
a 2nd-order ODE is equivalent to a system of 1st-order ODEs

Example. convert into a 1st-order system:
X" +5(x')2 +sinx =/t

Solution. Second derivative x”(t) is merely the derivative of x'(t).
So give x’ a name:

y=x".
Now rewrite * using y:
y' 4+ 5y? +sinx = /1.
Rearrange above two equations to a system:
X' =y

y' = —5y? —sinx +Vt



pendulum as a 1lst-order system

exercise. convert into a lst-order system with initial conditions:

solution.

0" + w?sinf = 0,

6(0)=A, ¢(0)=B
Z1 =2 z1(0)=A
Z, = —w?sin(z1)’ z(0) =B




using black-box solver ode45

e before we get to numerical solutions of systems, let's do a
single 1st-order IVP

e use Matlab or Octave on your own computer or online
example. solve for y(t) on 0 < t < 2, and estimate y(2):

y'==3y+e", y(0)=1

solution. the DE is y' = f(t,y) so

>> f = @(t,y) 3%y + exp(-t);
>> [tt,yy] = oded5(f,[0,2],1);
>> plot(tt,yy) as
>> yy(end)

ans = 0.068908




only 12 steps, but accurate

the ode45 black-box is quite accurate
exercise. solve by hand for the exact value y(2):
y'==3y+e", y(0)=1

solution.

compare to y(end)=y(13) on previous slides:
>> 0.5%(exp(-2)+exp(-6))
ans = 0.068907

Euler would need 10° or 10° steps for this accuracy



calling ode45

e from the MATLAB documentation page on ode45:
[t,y] = ode45(odefun,tspan,y0),

where tspan = [t0 tf], integrates the system of differ-
ential equations y’ = f(t,y) from t0 to tf with initial
conditions y0. Each row in the solution array y corre-
sponds to a value returned in column vector t.

e see the above MATLAB page for examples of functions f(t,y)
for the odefun argument

e note further fine print about the tspan argument:

o If tspan has two elements [t0 tf] then the solver returns the
solution evaluated at internal integration steps in the interval.

o If tspan has more than two elements [t0,t1,t2,...,tf] then the
solver returns the solution evaluated at the given points.


https://www.mathworks.com/help/matlab/ref/ode45.html

ode45 for pendulum
example. let w = /7. solve for f(t) on the interval t € [0, 20]:

0" +w?sinf =0, 6(0)=3, #0)=0
solution. z1 = 0 and w? =7 so

7 =2 z1(0) =3
zy = —T7sin(z1) 2(0)=0

This is 2/ = f(t, z) so:

>> £ = @(t,z) [z(2); -T*sin(z(1))];
>> [tt,zz] = odedb(f,[0,20],[3;0]);
>> plot(tt,zz)

>> xlabel t

>> legend (’\theta(t)’,’d\theta/dt’)




pendulum: better and movier

e the solution is more accurate than it looks!

e for better appearance, generate more points (below):

>> [tt,zz] = oded45(f,[0:.01:20],[3;0]);
>> plot(tt,zz), xlabel t

e one can also make a movie

o see pendmovie.m at the public Codes tab



https://bueler.github.io/math302/assets/codes/S19/pendmovie.gif
https://bueler.github.io/math302/assets/codes/F23/pendmovie.m
https://bueler.github.io/math302/codes.html

back to linear mass-spring

example. solve for x(t) on the interval t € [0, 20]:
X" +7x =0, x(0)=3, Xx(0)=0

exact solution.

irearaty
x(t) = 3cos(V7t)

continuing previous code: o s 10 I 2

>> plot(tt,zz(:,1),’b’,tt,3*cos(sqrt(7)*tt),’g’)
>> xlabel t
>> legend(’nonlinear \theta(t)’,’linear x(t)’)



linear mass-spring: exact vs. numerical

e this is a good case on which to check accuracy
e example. find x(20):

X" +7x =0, x(0)=3, X'(0)=0

exact solution. x(20) = 3 cos(v/7(20)) = —2.6441

numerical solution. z; = x and z» = x’ so

Z =2 z1(0) =3
0

zh=-T7 2(0)

>> f1 = @(t,z) [z(2); -7*xz(1)];
>> [ttl,zzl] = oded45(f1,[0:.01:20],[3;0]);
>> zzl(end, 1)
ans = -2.6492
e what about plots of the exact and numerical solutions?

o you won't see difference: x(t) = 3cos(v/7t) versus zz1(:,1)



nonlinear springs

This spring

springs are usually well-modeled by

Hooke's law F(x) = —kx for small

displacements x from the equilibrium

position Used to be this spring
... but when they are over-extended, ARAAARMAAMRAAAAMA

Open Coil

or closed coil, etc. then they need
different models mx” = F(x)

Closed Coil

F() F(x) F(x) F(x)

NN NN

linear hard soft closed



exercise #9: (numerical) nonlinear spring

3 is a hard spring model

e so F(x)=—x—x
e suppose we also have damping (thus x(t) — 0 as t — o)
exercise #9 in §5.3: numerically solve
d2x  dx ,
F‘FE—FX—FX —0 X(O):—3,X(O):8

solution: write as system using x = z1, X' = z5:

Z],_ = 2 Z]_(O) — _3
Zy=—zm—z2 27 2(0) =8
and use ode45: \
>> f = 0(t,z) [z(2); -z(2)-z(1)-z(1)"3]; )Y
>> [tt,zz] = oded45(f,[0:.01:5],[-3;8]); o 7 E—
>> plot(tt,zz), xlabel t, grid on \/
>> legend(’x(t)’,’dx/dt’)




bullet to geosynchronous orbit

example. We want to use a bullet weighting 100 grams to destroy a
satellite in geosynchronous (geostationary) orbit, approximately 36000
km. What velocity is needed if we ignore air drag?

solution. Constant gravity g will not do. The gravity decreases
as the bullet rises. §5.3 states Newton's law of gravitation:

[

M O
my" = —ky—gn where m =(bullet mass), M =(earth mass)

After simplification (see text), and with initial conditions, this is

R2
y' = & y(0)=R, y'(0)=V

We take R = 6.4 x 10° m =(radius of earth) and g = 9.8. (Note bullet
mass does not matter. Earth’'s mass is built into g.)

The Question: Find V so that the maximum of y(t) solving the above
IVP is 3.6 x 10" m.



bullet to geosynchronous orbit 2
question: Find V so maxy(t) = 3.6 x 107, given

R2
y' = &7 y(0)=R, y'(0)=V

and R = 6.4 x 10° m =(radius of earth) and g = 9.8
solution?: as system with y = z;, ¥/ = z and C = gR?:

R
vV

z =2 2(0)
ZQ(O)

>> g =9.8; R =6.4e6; C = g¥R"2;

>> f = @(t,z) [z(2); -C/z(1)"2];

>> V = 5000;

>> [tt,zz] = ode45(f,[0,1000],[R;V]);

>> plot(tt,zz(:,1)) > e
>> xlabel t, ylabel y

>> max(zz(:,1)) peers
ans = 7.9924e+06

sssss



bullet to geosynchronous orbit 3

e trial and error needed!

e | finished with:

>> V = 10157; [tt,zz] = ode45(f,[0,20000], [R;V]);
>> [max(zz(:,1)) zz(end,1)]
ans =

3.60120e+07 2.36604e+07

a bit of hard-earned extra credit for any of these:

@ ecnergy methods allow you to solve the above problem by hand; see
upcoming worksheet on how to do it,

@ but on the other hand one can add air drag by a reasonable model
and use the same numerical method from MATLAB; do so

© given air drag from @ , will the bullet survive the heating?
(ablative ceramic-coated tungsten bullet?)

o this will need another DE coupled to the first



how the black box works

e how does the black box ode45 work?
o good question!
e basically: it is just a fancier form of Euler's method
e more thoroughly:
it uses a pair of Runge-Kutta methods
...so it can adaptively choose its step size

see the MATLAB reference page for ode45

o
o
o
o covered in Chapter 9


https://en.wikipedia.org/wiki/Runge_Kutta_methods
https://www.mathworks.com/help/matlab/ref/ode45.html

dependent variable missing

e there are by-hand solvable nonlinear 2nd-order DEs:

DE ‘ technique ‘ first integral

y" =f(t,y,y’) | too general

y" = f(t) just antidifferentiate | y’ = F(t )+ ¢
where F(t) = [ f(t

y" = f(y) compute energy ( )2+ P( )=c
[worksheet] where P(z)=— [ f(z

% substitute u = y’ Ry )=t+c
[§4.10] where Q(u) = %

e last category called “dependent variable y is missing” (§4.10)

e you can often solve by the substitution u = y’

o this can sometimes work for y” = f(t,y’) too



exercise #6 in §4.10

exercise. find the general solution:

-t )

ety = (y')?



expectations

to learn this material, just listening to a lecture is not enough
e read section 4.10 in the textbook
o skip the “Use of Taylor series” material ...we'll get to it later
e read section 5.3 in the textbook
o you can safely skip the material on “Telephone wires”
(boundary value problems are not covered in Math 302)
e take the whole thing seriously by going and finding some good
youtube videos etc. on ODE simulations

e do Homework 5.3



