5.3 Nonlinear models (with 4.10 material too)
 a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

outline

examples of nonlinear 2nd-order differential equations (DEs):

- pendulum (§5.3)
- using a numerical solver in Matlab (see §4.10)
- hard and soft springs (§5.3)
- non-constant gravity: from earth to high orbit (§5.3)
- dependent variable missing (§4.10)

nonlinear pendulum

- suppose a pendulum oscillates (swings back and forth) without resistance
- because it oscillates it must be modeled by a 2nd-order linear DE
- approximately linear for small oscillations
- for bigger oscillations ($>20^{\circ}$?) a nonlinear model is more accurate
- from the diagram:

$$
m \ell \frac{d^{2} \theta}{d t^{2}}=-m g \sin \theta
$$

- you are not responsible for the derivation
- but: $s=\ell \theta$ is arclength, so $\ell \frac{d^{2} \theta}{d t^{2}}$ is acceleration, and only the tangential force causes motion

linear small angle model

- divide by $m \ell$ and move term: $\frac{d^{2} \theta}{d t^{2}}+\frac{g}{\ell} \sin \theta=0$
- if $\omega=\sqrt{\frac{g}{\ell}}$ then $\sqrt{\frac{d^{2} \theta}{d t^{2}}+\omega^{2} \sin \theta=0}$ for any angle
- recall $\sin \theta \approx \theta$ for small θ because $\sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\ldots$
- a small-angle model:

$$
\frac{d^{2} \theta}{d t^{2}}+\omega^{2} \theta=0
$$

- small-angle solution:

$$
\theta(t)=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)
$$

nonlinear versus linearized pendulum

nonlinear: any angles	linearized: small angles
$\theta^{\prime \prime}+\omega^{2} \sin \theta=0$	$\theta^{\prime \prime}+\omega^{2} \theta=0$
solution?	$\theta(t)=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)$

- $\omega=\sqrt{g / \ell}$ in both DEs
- we do not know how to solve a nonlinear DE like this pendulum
- the term $\sin \theta$ is not linear: $\sin (a+b) \neq \sin (a)+\sin (b)$

what to do about a nonlinear DE?

- for example, the pendulum DE: $\quad \theta^{\prime \prime}+\omega^{2} \sin \theta=0$
- what to do about a nonlinear equation like this?
- $\theta=e^{r t}$ is not a solution for any r (real or complex)

1. read section $4.10 \longleftarrow$ gives advice, not a method
2. use concept of energy

- makes progress (up-coming worksheet)
- but we just get a 1st-order DE which we might be unsolveable

3. use infinite series

- makes progress (Chapter 6)
- but only gives approximations

4. numerical approximations

- Euler's method is just first of many such methods
- more in Chapter 9
- requires a specific IVP
- example next: using an efficient "black box" solver in Matlab

systems of 1st-order ODEs

need this idea:
a 2 nd-order ODE is equivalent to a system of 1st-order ODEs
Example. convert into a 1st-order system:

$$
x^{\prime \prime}+5\left(x^{\prime}\right)^{2}+\sin x=\sqrt{t}
$$

Solution. Second derivative $x^{\prime \prime}(t)$ is merely the derivative of $x^{\prime}(t)$. So give x^{\prime} a name:

$$
y=x^{\prime}
$$

Now rewrite $*$ using y :

$$
y^{\prime}+5 y^{2}+\sin x=\sqrt{t}
$$

Rearrange above two equations to a system:

$$
\begin{aligned}
& x^{\prime}=y \\
& y^{\prime}=-5 y^{2}-\sin x+\sqrt{t}
\end{aligned}
$$

pendulum as a 1st-order system

exercise. convert into a 1st-order system with initial conditions:

$$
\theta^{\prime \prime}+\omega^{2} \sin \theta=0, \quad \theta(0)=A, \quad \theta^{\prime}(0)=B
$$

solution.

$$
\begin{array}{cc}
z_{1}^{\prime}=z_{2} & z_{1}(0)=A \\
z_{2}^{\prime}=-\omega^{2} \sin \left(z_{1}\right), & \\
z_{2}(0)=B
\end{array}
$$

using black-box solver ode45

- before we get to numerical solutions of systems, let's do a single 1st-order IVP
- use Matlab or Octave on your own computer or online example. solve for $y(t)$ on $0 \leq t \leq 2$, and estimate $y(2)$:

$$
y^{\prime}=-3 y+e^{-t}, \quad y(0)=1
$$

solution. the DE is $y^{\prime}=f(t, y)$ so
>> $f=@(t, y)-3 * y+\exp (-t) ;$
>> [tt,yy] = ode45(f, [0,2],1);
>> plot(tt,yy)
>> yy(end)
ans $=0.068908$

only 12 steps, but accurate

- the ode45 black-box is quite accurate
- exercise. solve by hand for the exact value $y(2)$:

$$
y^{\prime}=-3 y+e^{-t}, \quad y(0)=1
$$

solution.

- compare to $y(e n d)=y(13)$ on previous slides:
>> $0.5 *(\exp (-2)+\exp (-6))$
ans $=0.068907$
- Euler would need 10^{5} or 10^{6} steps for this accuracy

calling ode45

- from the Matlab documentation page on ode45:
[t,y] = ode45(odefun,tspan,y0),
where tspan $=[\mathrm{tO} \mathrm{tf}]$, integrates the system of differential equations $y^{\prime}=f(t, y)$ from to to tf with initial conditions y0. Each row in the solution array y corresponds to a value returned in column vector t.
- see the above Matlab page for examples of functions $f(t, y)$ for the odefun argument
- note further fine print about the tspan argument:
- If tspan has two elements [t0 tf] then the solver returns the solution evaluated at internal integration steps in the interval.
- If tspan has more than two elements [t0, t1, t2, .., tf] then the solver returns the solution evaluated at the given points.

ode45 for pendulum

example. let $\omega=\sqrt{7}$. solve for $\theta(t)$ on the interval $t \in[0,20]$:

$$
\theta^{\prime \prime}+\omega^{2} \sin \theta=0, \quad \theta(0)=3, \quad \theta^{\prime}(0)=0
$$

solution. $z_{1}=\theta$ and $\omega^{2}=7$ so

$$
\begin{array}{ll}
z_{1}^{\prime}=z_{2} & z_{1}(0)=3 \\
z_{2}^{\prime}=-7 \sin \left(z_{1}\right) & z_{2}(0)=0
\end{array}
$$

This is $z^{\prime}=f(t, z)$ so:
>> $f=@(t, z)[z(2) ;-7 * \sin (z(1))] ;$
>> [tt,zz] = ode45(f,[0,20],[3;0]);
>> plot(tt,zz)
>> xlabel t
>> legend('\theta(t)','d\theta/dt')

pendulum: better and movier

- the solution is more accurate than it looks!
- for better appearance, generate more points (below):

```
>> [tt,zz] = ode45(f,[0:.01:20],[3;0]);
>> plot(tt,zz), xlabel t
```

- one can also make a movie
- see pendmovie.m at the public Codes tab

back to linear mass-spring

example. solve for $x(t)$ on the interval $t \in[0,20]$:

$$
x^{\prime \prime}+7 x=0, \quad x(0)=3, \quad x^{\prime}(0)=0
$$

exact solution.

$$
x(t)=3 \cos (\sqrt{7} t)
$$

continuing previous code:

>> plot(tt,zz(:,1),'b',tt,3*cos(sqrt(7)*tt),'g')
>> xlabel t
>> legend('nonlinear \theta(t)','linear $\mathrm{x}(\mathrm{t})$ ')

linear mass-spring: exact vs. numerical

- this is a good case on which to check accuracy
- example. find $x(20)$:

$$
x^{\prime \prime}+7 x=0, \quad x(0)=3, \quad x^{\prime}(0)=0
$$

exact solution. $x(20)=3 \cos (\sqrt{7}(20))=-2.6441$
numerical solution. $z_{1}=x$ and $z_{2}=x^{\prime}$ so

$$
\begin{array}{ll}
z_{1}^{\prime}=z_{2} & z_{1}(0)=3 \\
z_{2}^{\prime}=-7 z_{1} & z_{2}(0)=0
\end{array}
$$

```
>> fl = @(t,z) [z(2); -7*z(1)];
>> [ttl,zzl] = ode45(fl,[0:.01:20],[3;0]);
>> zzl(end,1)
ans = -2.6492
```

- what about plots of the exact and numerical solutions?
- you won't see difference: $x(t)=3 \cos (\sqrt{7} t)$ versus $z z l(:, 1)$

nonlinear springs

- springs are usually well-modeled by Hooke's law $F(x)=-k x$ for small displacements x from the equilibrium position
- ...but when they are over-extended, or closed coil, etc. then they need different models $m x^{\prime \prime}=F(x)$

Agregengrachan

Open Coil

Closed Coil

linear

hard

soft

closed

exercise $\# 9$: (numerical) nonlinear spring

- so $F(x)=-x-x^{3}$ is a hard spring model
- suppose we also have damping (thus $x(t) \rightarrow 0$ as $t \rightarrow \infty$) exercise \#9 in §5.3: numerically solve

$$
\frac{d^{2} x}{d t^{2}}+\frac{d x}{d t}+x+x^{3}=0, \quad x(0)=-3, x^{\prime}(0)=8
$$

solution: write as system using $x=z_{1}, x^{\prime}=z_{2}$:

$$
\begin{array}{ll}
z_{1}^{\prime}=z_{2} & z_{1}(0)=-3 \\
z_{2}^{\prime}=-z_{2}-z_{1}-z_{1}^{3} & z_{2}(0)=8
\end{array}
$$

and use ode45:
>> $f=@(t, z)[z(2) ;-z(2)-z(1)-z(1) \wedge 3] ;$
>> [tt,zz] = ode45(f,[0:.01:5],[-3;8]);
>> plot(tt,zz), xlabel t, grid on
>> legend('x(t)','dx/dt')

bullet to geosynchronous orbit

example. We want to use a bullet weighting 100 grams to destroy a satellite in geosynchronous (geostationary) orbit, approximately 36000 km . What velocity is needed if we ignore air drag?
solution. Constant gravity g will not do. The gravity decreases as the bullet rises. $\S 5.3$ states Newton's law of gravitation:

$$
m y^{\prime \prime}=-k \frac{M m}{y^{2}} \text { where } m=(\text { bullet mass }), M=(\text { earth mass })
$$

After simplification (see text), and with initial conditions, this is

$$
y^{\prime \prime}=-g \frac{R^{2}}{y^{2}}, \quad y(0)=R, \quad y^{\prime}(0)=V
$$

We take $R=6.4 \times 10^{6} \mathrm{~m}=$ (radius of earth) and $g=9.8$. (Note bullet mass does not matter. Earth's mass is built into g.)

The Question: Find V so that the maximum of $y(t)$ solving the above IVP is $3.6 \times 10^{7} \mathrm{~m}$.

bullet to geosynchronous orbit 2

question: Find V so $\max y(t)=3.6 \times 10^{7}$, given

$$
y^{\prime \prime}=-g \frac{R^{2}}{y^{2}}, \quad y(0)=R, \quad y^{\prime}(0)=V
$$

and $R=6.4 \times 10^{6} \mathrm{~m}=($ radius of earth) and $g=9.8$ solution?: as system with $y=z_{1}, y^{\prime}=z_{2}$ and $C=g R^{2}$:

$$
\begin{array}{ll}
z_{1}^{\prime}=z_{2} & z_{1}(0)=R \\
z_{2}^{\prime}=-C z_{1}^{-2} & z_{2}(0)=V
\end{array}
$$

>> $\mathrm{g}=9.8 ; \mathrm{R}=6.4 \mathrm{e} 6 ; \quad \mathrm{C}=\mathrm{g} * \mathrm{R} \wedge 2$;
>> $f=@(t, z)\left[z(2) ;-C / z(1)^{\wedge} 2\right] ;$
>> V = 5000;
>> [tt,zz] = ode45(f,[0,1000],[R;V]);
>> plot(tt,zz(:,1))
>> xlabel t, ylabel y
>> $\max (z z(:, 1))$
ans $=7.9924 \mathrm{e}+06$

bullet to geosynchronous orbit 3

- trial and error needed!
- I finished with:

```
>> V = 10157; [tt,zz] = ode45(f,[0,20000],[R;V]);
>> [max(zz(:,1)) zz(end,1)]
ans =
    3.60120e+07 2.36604e+07
```

a bit of hard-earned extra credit for any of these:
(1) energy methods allow you to solve the above problem by hand; see upcoming worksheet on how to do it,

2 but on the other hand one can add air drag by a reasonable model and use the same numerical method from Matlab; do so
(3) given air drag from (2), will the bullet survive the heating? (ablative ceramic-coated tungsten bullet?)

- this will need another DE coupled to the first

how the black box works

- how does the black box ode45 work?
- good question!
- basically: it is just a fancier form of Euler's method
- more thoroughly:
- it uses a pair of Runge-Kutta methods
- ...so it can adaptively choose its step size
- see the Matlab reference page for ode 45
- covered in Chapter 9

dependent variable missing

- there are by-hand solvable nonlinear 2nd-order DEs:

DE	technique	first integral
$y^{\prime \prime}=f\left(t, y, y^{\prime}\right)$	too general	
$y^{\prime \prime}=f(t)$	just antidifferentiate	$y^{\prime}=F(t)+c$ where $F(t)=\int f(t) d t$
$y^{\prime \prime}=f(y)$	compute energy	$\frac{1}{2}\left(y^{\prime}\right)^{2}+P(y)=c$ where $P(z)=-\int f(z) d z$ $[$ worksheet $]$
$y^{\prime \prime}=f\left(y^{\prime}\right)$	substitute $u=y^{\prime}$	$Q\left(y^{\prime}\right)=t+c$
	$[\S 4.10]$	where $Q(u)=\int \frac{d u}{f(u)}$

- last category called "dependent variable y is missing" (§4.10)
- you can often solve by the substitution $u=y^{\prime}$
- this can sometimes work for $y^{\prime \prime}=f\left(t, y^{\prime}\right)$ too

exercise $\# 6$ in $\S 4.10$

exercise. find the general solution:

$$
e^{-t} y^{\prime \prime}=\left(y^{\prime}\right)^{2}
$$

expectations

to learn this material, just listening to a lecture is not enough

- read section 4.10 in the textbook
- skip the "Use of Taylor series" material . . . we'll get to it later
- read section 5.3 in the textbook
- you can safely skip the material on "Telephone wires" (boundary value problems are not covered in Math 302)
- take the whole thing seriously by going and finding some good youtube videos etc. on ODE simulations
- do Homework 5.3

