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a good reason

e in Chapter 4 we solved 2nd-order linear DEs
ay" + by’ + oy = g(t)

e a good reason is that

anything that smoothly oscillates has * for a model

@ a mass suspended on a spring oscillates up and down
@® the current in an electrical circuit flows back-and-forth
©® a pendulum swings back and forth

@ the earth moves up and down in an earthquake

©® magnetic field in a radio wave oscillates

@ a drum-head vibrates

@ a photon is

e 5.1 and 5.3 slides cover @ — ©



1st-order linear: no oscillation

e background assumption: laws of nature are autonomous

e why is 2nd-order needed for oscillation?
e lst-order linear autonomous DEs cannot generate oscillation

y'=ay+b

/ay+b /dt

1
“Inlay+bl=t+c
a

1
y(t) = 5 (Ceat — b)
o solutions are always growing/decaying exponentials
e 1st-order nonlinear DEs would be nearly-linear for small solutions

e summary: we expect oscillation models are 2nd-order
o we know examples: y”" +y =0 < y=cicost+ csint



mass-spring model: the setup

a specific set-up so that the equations are clear:

e hang spring from rigid support

o length ¢ and spring constant k rigid
. support
e choose mass m and hook to the spring

. . S| = | =
e it stretchs distance s down to

equilibrium position

e mark length scale:

=

=

o x =0 is equilibrium position unstretehed 77 1
o positive x is downward @ _ _
equilibrium =
e x is the displacement from additional position @i
. . g—ks =0
stretch of the spring, i.e. downward e

motion
displacement of the mass from its

equilibrium position



Newton's law

e Newton's second law is ma = F
e for our first mass-spring model:
d2X gl

mﬁ = mg — k(X =+ 5) supbpjrt

o but mg = ks so

=

d?x
m— =—kx| = B
dtz unstretched
Y ! " . equiliby
e “Hooke's law" Fgping = —kx is a cilixiun

model for how springs work mg—ks =0

o not a bad model for small motions
o improved model in 5.3

motion

e in practice:
k is determined from mg = ks



(undamped) mass-spring solution

. 2
from last slide: m% + kx=0

constant coefficient: substitute x(t) = e’ and get

[k
mr®+ k=0 — r=44—i=+wi
m

— .k
w = m

general solution:

x(t) = ¢ cos(wt)+casin(wt)




the meaning of w

general solution: x(t) = ¢ cos(wt) + ¢z sin(wt)

suppose t is measured in seconds

then w = \/% is frequency of oscillation in radians per second
o units are correct because wt must be in radians

time T = %’T is period of oscillation
o equation wT = 27 gives the smallest T > 0 so that

cos(wT) = cos(0) and sin(wT) =sin(0)

o ...general solution has period T



§5.1 exer. #3: “free undamped motion”

3. A mass weighing 24 pounds, attached to the end of a spring,
stretches it 4 inches. Initially the mass is released from rest from a
point 3 inches above the equilibrium position. Find the equation of
motion.



mass/weight English unit stupidity

e ‘“kilograms" is the Sl unit for mass m

o g =9.8m/s? is acceleration of gravity
o mg is a force in newtons N = kg m/s?

e “pounds” is a unit for force mg
o it is a weight not a mass
e “slugs” are a unit for mass m

o old English system ...
o and you need: g = 32ft/s?



amplitude and phase of x(t)
e for any ci, ¢, this formula is a wave or oscillation:
x(t) = c1 coswt + e sinwt

e what is its amplitude?
o only an easy question if either c; =0 or c; =0

Problem: find amplitude A and phase angle ¢ so that
x(t) = ¢y coswt + e sinwt = Asin(wt + ¢)
Solution: use sin(a + b) = sin acos b + cos asin b so

Asin(wt + ¢) = Asin(wt) cos ¢ + A cos(wt)sin ¢
= c1 = Asing, cp = Acos ¢

c
== A:\/C12+622, tangb:—1
(&)



illustration

example: graph x(t) = Asin(wt + ¢) for frequency w = 2.7,
amplitude A = 3.3, and phase angle ¢ = 0.37

o period T =27/w =2.51

o x(t) = 2.67 cos(wt) + 1.94sin(wt)
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RA




exercise #6 in §5.1

e another “free undamped motion” exercise

6. A force of 400 newtons stretches a spring 2 meters. A
mass of 50 kilograms is attached to the end of the spring
and is initially released from the equilibrium position with
an upward velocity of 10 m/s. Find the motion x(t).



damped mass-spring model

actual mass-springs don't oscillate forever

friction or drag is called “damping”

o simple case: mass is surrounded by
water or other fluid

model: damping is proportional to velocity

dx
Fdamping = _5‘/ = _5E

o (> 0 so damping force opposes motion
o same model as drag force for projectiles
in sections 1.3, 3.1

Newton’s 2nd law again:

o
dt?

= —kx — ,8% or mx" = —kx—Bx’'



https://youtu.be/lPg695IXbPo

damped solution method

e recall undamped mass-spring model with w = \/%:

mx" = —kx <= x'"+w’x=0

e new damped mass-spring model:

mx" = —kx — ﬁx/ — X'+ +wx=0
B
)\ =
° 2m
auxiliary equation from x(t) = e™:

o

P4+ 2 r+w?> =0
has roots:
22X+ V4N — 42
r = w :*)\:‘:‘//\27002:

2
o are ri, r» distinct? real? complex?

[¢]

rn,r



exercise #27 in §5.1

“free damped motion” exercise

27. A 1 kilogram mass is attached to a spring whose
constant is 16 N/m. The entire system is submerged in a
liquid that imparts a damping force numerically equal to 10
times the instantaneous velocity. Determine the equations
of motion if the mass is initially released from rest from a
point 1 meter below the equilibrium position.



slight variation comes out different

A 1 kilogram mass is attached to a spring whose constant
is 16 N/m. The entire system is submerged in a liquid
that imparts a damping force numerically equal to 6 times
the instantaneous velocity. Determine the equations of
motion if the mass is initially released from rest from a
point 1 meter below the equilibrium position.



damping cases

d’x dx
— + 2\ — 2x=0
gz TG T
undamped if A = 0:
x(t) = ¢y cos(wt) + e sin(wt)

rl,rgf_—/\i\//\2—w2‘
— 2_ .2 _ 2,2
X(t) e At (Cle\/Wt ce VA%2—w t)

overdamped if \*> — w? > 0:

critically damped if \> — w? = 0: n=rn=-X\

x(t) = e *(cy + o)

r,rn = —A:t\/m;‘
x(t) = e M (q cos(v/w? — A2 t) + cpsin(v/w? — N2 t))

underdamped if \> — w? < 0:




consider m=1, k=4

w:\/§:2:

d?x dx
— +2\— +4x =
e + )\dt+ x =0

with initial values
x(0) =1,x(0)=1
picture cases

A=1/4,2,5

o recall A = 2ﬁ

o s0f=1/2,4,10

damping cases pictured

—\=1/4
—)\=2
A=5




a plotting code: massspringplot.m

function massspringplot(m,beta,k,x0,v0,T)

% MASSSPRINGPLOT Make a plot on O < t < T of solution to
% mx’’ + beta x> +kx=0

% with initial conditions x(0) = x0, x’(0) = vO.

omega = sqrt(k/m); lambda = beta/(2*m);
D = lambda”2 - omega”2;
t = 0:T/200:T; % 200 points enough for smooth graph
if D>0
fprintf (’overdamped\n’)
Z = sqrt(D); c = [1, 1; -lambda+Z, -lambda-Z] \ [x0; vO];
x = exp(-lambdax*t) .* (c(1) * exp(Z*t) + c(2) * exp(-Zxt));
elseif D ==
fprintf(’critically damped\n’)
c = [x0; vO + lambda * x0];
x = exp(-lambdaxt) .x (c(1) + c(2) * t);
else % D<O
fprintf (’underdamped\n’)
W = sqrt(-D); c = [x0; (vO + lambda * x0) / W];
x = exp(-lambda*t) .* (c(1) * cos(W¥t) + c(2) * sin(Wxt));
end
plot(t,x), grid on, xlabel(’t’), ylabel(’x’)



example

example: solve the IVP
mx" = —kx — X/, x(0) = xp, X'(0) = v

in the critically-damped case



forced

e the nonhomogeneous version is called a driven, damped
mass-spring where force f(t) is applied to the mass:

dx
— = —kx — f— +f(t
X Bdt + f(t)
e equivalently, after dividing by m:

d?x __dx
— +2ACT +w’x = F(t)

e a version of this model is a
damped mass-spring formed by
your car

<

Motion

Spring Constant
o force is applied to the support
and your car is the mass



Newton's law: ma = F ‘

mass-spring DEs

w form

2
undamped m% — —kx dt2 LW =0
2
damped % —hx — dt dt2 )\dx+w x=0
damped x _ dx dx
and driven | "d® T —kx =BG +1(1) dtz A+ wPx = F(t)
notes:
o w= \/W, A= B/(2m), F(t) = f(t)/m

e with driving force f(t) the problem is nonhomogeneous

e you would solve the damped and driven problems by undetermined
coefficients to find a particular solution (section 4.4)



exercise #43 in §5.1

Solve the IVP
d2
dit); + w?x = Fycost, x(0)=0, X'(0)=0

and compute lim x(t)
Y—w



exercise #43 pictured

— =8, y=7

A WM

0 2 4 6 8 10 12 14
t

e idea: resonance can occur in driven mass-spring systems



RLC circuit

e consider the electrical circuit: R

I

|

C

e has electical source (E = E(t)), an inductor (L), a resistor
(R), and a capacitor (C)

e a differential equation for the charge q is

d’q dg 1
1C9 g% ey
g2 PRg tca=£E®

e because dq/dt = I, a differential equation for the current | is

d?l d 1
L— +R—+ =1 =F
dt? + dt + C (t)



circuit analogy

mass-spring electical circuit
mass m inductance L
drag resistance R
spring constant k inverse of capacitance 1/C
applied driving force f(t) | applied voltage source E(t)
mx" + Bx" + kx = f(t) Lq" + Rq' + Lq = E(t)

e this is how radios are understood
o tuning a radio means choosing the
capacitance C to cause resonance at the
frequency you want to hear from the
input E(t) from the antenna
e based on this idea there were analog
computers which used a configurable
electical circuit to model mechanical
motions




expectations

to learn this material, just listening to a lecture is not enough
e read section 5.1 in the textbook

o material on “double spring systems” (p. 201) can be skipped
o while | discussed electrical circuits in these slides, | will not ask
about it on quizzes or exams

e do Homework 5.1



