5.1 Linear mass-spring models a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

a good reason

- in Chapter 4 we solved 2nd-order linear DEs

$$
a y^{\prime \prime}+b y^{\prime}+c y \stackrel{*}{=} g(t)
$$

- a good reason is that anything that smoothly oscillates has $*$ for a model
(1) a mass suspended on a spring oscillates up and down
(2) the current in an electrical circuit flows back-and-forth
(3) a pendulum swings back and forth
(4) the earth moves up and down in an earthquake
(5) magnetic field in a radio wave oscillates
(6) a drum-head vibrates
(7) a photon is
- 5.1 and 5.3 slides cover (1) - 3

1st-order linear: no oscillation

- background assumption: laws of nature are autonomous
- why is 2 nd-order needed for oscillation?
- 1st-order linear autonomous DEs cannot generate oscillation

$$
\begin{aligned}
y^{\prime} & =a y+b \\
\int \frac{d y}{a y+b} & =\int d t \\
\frac{1}{a} \ln |a y+b| & =t+c \\
y(t) & =\frac{1}{a}\left(C e^{a t}-b\right)
\end{aligned}
$$

- solutions are always growing/decaying exponentials
- 1st-order nonlinear DEs would be nearly-linear for small solutions
- summary: we expect oscillation models are 2nd-order
- we know examples: $y^{\prime \prime}+y=0 \Longleftrightarrow y=c_{1} \cos t+c_{2} \sin t$

mass-spring model: the setup

a specific set-up so that the equations are clear:

- hang spring from rigid support
- length ℓ and spring constant k
- choose mass m and hook to the spring
- it stretchs distance s down to equilibrium position
- mark length scale:
- $x=0$ is equilibrium position
- positive x is downward
- x is the displacement from additional stretch of the spring, i.e. downward displacement of the mass from its equilibrium position

Newton's law

- Newton's second law is ma=F
- for our first mass-spring model:

$$
m \frac{d^{2} x}{d t^{2}}=m g-k(x+s)
$$

- but $m g=k s$ so

$$
m \frac{d^{2} x}{d t^{2}}=-k x
$$

- "Hooke's law" $F_{\text {spring }}=-k x$ is a model for how springs work

- not a bad model for small motions
- improved model in 5.3
- in practice:
k is determined from $m g=k s$

(undamped) mass-spring solution

- from last slide: $m \frac{d^{2} x}{d t^{2}}+k x=0$
- constant coefficient: substitute $x(t)=e^{r t}$ and get

$$
m r^{2}+k=0 \quad \Longleftrightarrow \quad r= \pm \sqrt{\frac{k}{m}} i= \pm \omega i
$$

- $\omega=\sqrt{\frac{k}{m}}$
- general solution:

$$
x(t)=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)
$$

the meaning of ω

- general solution: $x(t)=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)$
- suppose t is measured in seconds
- then $\omega=\sqrt{\frac{k}{m}}$ is frequency of oscillation in radians per second
- units are correct because ωt must be in radians
- time $T=\frac{2 \pi}{\omega}$ is period of oscillation
- equation $\omega T=2 \pi$ gives the smallest $T>0$ so that

$$
\cos (\omega T)=\cos (0) \quad \text { and } \quad \sin (\omega T)=\sin (0)
$$

- ... general solution has period T

§5.1 exer. \#3: "free undamped motion"

3. A mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. Initially the mass is released from rest from a point 3 inches above the equilibrium position. Find the equation of motion.

mass/weight English unit stupidity

- "kilograms" is the SI unit for mass m
- $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ is acceleration of gravity
- mg is a force in newtons $N=\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$
- "pounds" is a unit for force $m g$
- it is a weight not a mass
- "slugs" are a unit for mass m
- old English system ...
- and you need: $g=32 \mathrm{ft} / \mathrm{s}^{2}$

amplitude and phase of $x(t)$

- for any c_{1}, c_{2}, this formula is a wave or oscillation:

$$
x(t)=c_{1} \cos \omega t+c_{2} \sin \omega t
$$

- what is its amplitude?
- only an easy question if either $c_{1}=0$ or $c_{2}=0$

Problem: find amplitude A and phase angle ϕ so that

$$
x(t)=c_{1} \cos \omega t+c_{2} \sin \omega t=A \sin (\omega t+\phi)
$$

Solution: use $\sin (a+b)=\sin a \cos b+\cos a \sin b$ so

$$
\begin{gathered}
A \sin (\omega t+\phi)=A \sin (\omega t) \cos \phi+A \cos (\omega t) \sin \phi \\
\Longrightarrow \quad c_{1}=A \sin \phi, c_{2}=A \cos \phi \\
\Longrightarrow \quad A=\sqrt{c_{1}^{2}+c_{2}^{2}}, \quad \tan \phi=\frac{c_{1}}{c_{2}}
\end{gathered}
$$

illustration

- example: graph $x(t)=A \sin (\omega t+\phi)$ for frequency $\omega=2.7$, amplitude $A=3.3$, and phase angle $\phi=0.3 \pi$
- period $T=2 \pi / \omega=2.51$
- $x(t)=2.67 \cos (\omega t)+1.94 \sin (\omega t)$

exercise \#6 in §5.1

- another "free undamped motion" exercise

6. A force of 400 newtons stretches a spring 2 meters. A mass of 50 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of $10 \mathrm{~m} / \mathrm{s}$. Find the motion $x(t)$.

damped mass-spring model

- actual mass-springs don't oscillate forever
- friction or drag is called "damping"
- simple case: mass is surrounded by water or other fluid
- model: damping is proportional to velocity

$$
F_{\text {damping }}=-\beta v=-\beta \frac{d x}{d t}
$$

- $\beta>0$ so damping force opposes motion
- same model as drag force for projectiles in sections 1.3, 3.1

youtu.be/IPg695IXbPo
- Newton's 2nd law again:

$$
m \frac{d^{2} x}{d t^{2}}=-k x-\beta \frac{d x}{d t} \quad \text { or } \quad m x^{\prime \prime}=-k x-\beta x^{\prime}
$$

damped solution method

- recall undamped mass-spring model with $\omega=\sqrt{\frac{k}{m}}$:

$$
m x^{\prime \prime}=-k x \quad \Longleftrightarrow \quad x^{\prime \prime}+\omega^{2} x=0
$$

- new damped mass-spring model:

$$
m x^{\prime \prime}=-k x-\beta x^{\prime} \quad \Longleftrightarrow \quad x^{\prime \prime}+2 \lambda x^{\prime}+\omega^{2} x=0
$$

- $\lambda=\frac{\beta}{2 m}$
- auxiliary equation from $x(t)=e^{r t}$:

$$
r^{2}+2 \lambda r+\omega^{2}=0
$$

- has roots:

$$
r=\frac{-2 \lambda \pm \sqrt{4 \lambda^{2}-4 \omega^{2}}}{2}=-\lambda \pm \sqrt{\lambda^{2}-\omega^{2}}=r_{1}, r_{2}
$$

- are r_{1}, r_{2} distinct? real? complex?

exercise \#27 in §5.1

- "free damped motion" exercise

27. A 1 kilogram mass is attached to a spring whose constant is $16 \mathrm{~N} / \mathrm{m}$. The entire system is submerged in a liquid that imparts a damping force numerically equal to 10 times the instantaneous velocity. Determine the equations of motion if the mass is initially released from rest from a point 1 meter below the equilibrium position.

slight variation comes out different

A 1 kilogram mass is attached to a spring whose constant is $16 \mathrm{~N} / \mathrm{m}$. The entire system is submerged in a liquid that imparts a damping force numerically equal to 6 times the instantaneous velocity. Determine the equations of motion if the mass is initially released from rest from a point 1 meter below the equilibrium position.

damping cases

$$
\frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=0
$$

- undamped if $\lambda=0$:

$$
x(t)=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)
$$

- overdamped if $\lambda^{2}-\omega^{2}>0$:

$$
r_{1}, r_{2}=-\lambda \pm \sqrt{\lambda^{2}-\omega^{2}}
$$

$$
x(t)=e^{-\lambda t}\left(c_{1} e^{\sqrt{\lambda^{2}-\omega^{2}} t}+c_{2} e^{-\sqrt{\lambda^{2}-\omega^{2}} t}\right)
$$

- critically damped if $\lambda^{2}-\omega^{2}=0$:

$$
r_{1}=r_{2}=-\lambda
$$

$$
x(t)=e^{-\lambda t}\left(c_{1}+c_{2} t\right)
$$

- underdamped if $\lambda^{2}-\omega^{2}<0$:

$$
r_{1}, r_{2}=-\lambda \pm \sqrt{\omega^{2}-\lambda^{2}} i
$$

$$
x(t)=e^{-\lambda t}\left(c_{1} \cos \left(\sqrt{\omega^{2}-\lambda^{2}} t\right)+c_{2} \sin \left(\sqrt{\omega^{2}-\lambda^{2}} t\right)\right)
$$

damping cases pictured

- consider $m=1, k=4$
- $\omega=\sqrt{\frac{k}{m}}=2$:

$$
\frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+4 x=0
$$

- with initial values

$$
x(0)=1, x^{\prime}(0)=1
$$

- picture cases

$$
\begin{aligned}
\lambda & =1 / 4,2,5 \\
& \circ \text { recall } \lambda=\frac{\beta}{2 m} \\
& \circ \text { so } \beta=1 / 2,4,10
\end{aligned}
$$

a plotting code: massspringplot.m

```
function massspringplot(m,beta,k,x0,v0,T)
% MASSSPRINGPLOT Make a plot on 0 < t < T of solution to
% m x', + beta x' + k x = 0
% with initial conditions }x(0)=x0, x'(0) = v0
omega = sqrt(k/m); lambda = beta/(2*m);
D = lambda^2 - omega^2;
t = 0:T/200:T; % 200 points enough for smooth graph
if D > 0
    fprintf('overdamped\n')
    Z = sqrt(D); c = [1, 1; -lambda+Z, -lambda-Z] \ [x0; v0];
    x = exp(-lambda*t) .* (c(1) * exp(Z*t) + c(2) * exp(-Z*t));
elseif D == 0
    fprintf('critically damped\n')
    c = [x0; v0 + lambda * x0];
    x = exp(-lambda*t) .* (c(1) + c(2) * t);
else % D < 0
    fprintf('underdamped\n')
    W = sqrt(-D); c = [x0; (v0 + lambda * x0) / W];
    x = exp(-lambda*t) .* (c(1) * cos(W*t) + c(2) * sin(W*t));
end
plot(t,x), grid on, xlabel('t'), ylabel('x')
```


example

example: solve the IVP

$$
m x^{\prime \prime}=-k x-\beta x^{\prime}, \quad x(0)=x_{0}, x^{\prime}(0)=v_{0}
$$

in the critically-damped case

forced

- the nonhomogeneous version is called a driven, damped mass-spring where force $f(t)$ is applied to the mass:

$$
m \frac{d^{2} x}{d t^{2}}=-k x-\beta \frac{d x}{d t}+f(t)
$$

- equivalently, after dividing by m :

$$
\frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=F(t)
$$

- a version of this model is a damped mass-spring formed by your car
- force is applied to the support and your car is the mass

mass-spring DEs

	Newton's law: $m a=F$	ω form
undamped	$m \frac{d^{2} x}{d t^{2}}=-k x$	$\frac{d^{2} x}{d t^{2}}+\omega^{2} x=0$
damped	$m \frac{d^{2} x}{d t^{2}}=-k x-\beta \frac{d x}{d t}$	$\frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=0$
damped and driven	$m \frac{d^{2} x}{d t^{2}}=-k x-\beta \frac{d x}{d t}+f(t)$	$\frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=F(t)$

notes:

- $\omega=\sqrt{k / m}, \lambda=\beta /(2 m), F(t)=f(t) / m$
- with driving force $f(t)$ the problem is nonhomogeneous
- you would solve the damped and driven problems by undetermined coefficients to find a particular solution (section 4.4)

exercise \#43 in $\S 5.1$

Solve the IVP

$$
\frac{d^{2} x}{d t^{2}}+\omega^{2} x=F_{0} \cos \gamma t, \quad x(0)=0, \quad x^{\prime}(0)=0
$$

and compute $\lim _{\gamma \rightarrow \omega} x(t)$

exercise \#43 pictured

- idea: resonance can occur in driven mass-spring systems

RLC circuit

- consider the electrical circuit:

- has electical source $(E=E(t))$, an inductor (L), a resistor (R), and a capacitor (C)
- a differential equation for the charge q is

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=E(t)
$$

- because $d q / d t=I$, a differential equation for the current I is

$$
L \frac{d^{2} I}{d t^{2}}+R \frac{d I}{d t}+\frac{1}{C} I=E^{\prime}(t)
$$

circuit analogy

mass-spring	electical circuit
mass m	inductance L
drag β	resistance R
spring constant k	inverse of capacitance $1 / C$
applied driving force $f(t)$	applied voltage source $E(t)$
$m x^{\prime \prime}+\beta x^{\prime}+k x=f(t)$	$L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E(t)$

- this is how radios are understood
- tuning a radio means choosing the capacitance C to cause resonance at the frequency you want to hear from the input $E(t)$ from the antenna
- based on this idea there were analog computers which used a configurable electical circuit to model mechanical motions

expectations

to learn this material, just listening to a lecture is not enough

- read section 5.1 in the textbook
- material on "double spring systems" (p. 201) can be skipped
- while I discussed electrical circuits in these slides, I will not ask about it on quizzes or exams
- do Homework 5.1

