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a good reason

• in Chapter 4 we solved 2nd-order linear DEs

ay ′′ + by ′ + cy
∗
= g(t)

• a good reason is that

anything that smoothly oscillates has ∗ for a model

1 a mass suspended on a spring oscillates up and down
2 the current in an electrical circuit flows back-and-forth
3 a pendulum swings back and forth
4 the earth moves up and down in an earthquake
5 magnetic field in a radio wave oscillates
6 a drum-head vibrates
7 a photon is

• 5.1 and 5.3 slides cover 1 – 3



1st-order linear: no oscillation

• background assumption: laws of nature are autonomous

• why is 2nd-order needed for oscillation?

• 1st-order linear autonomous DEs cannot generate oscillation

y ′ = ay + b∫
dy

ay + b
=

∫
dt

1

a
ln |ay + b| = t + c

y(t) =
1

a

(
Ceat − b

)
◦ solutions are always growing/decaying exponentials

• 1st-order nonlinear DEs would be nearly-linear for small solutions

• summary: we expect oscillation models are 2nd-order

◦ we know examples: y ′′ + y = 0 ⇐⇒ y = c1 cos t + c2 sin t



mass-spring model: the setup

a specific set-up so that the equations are clear:

• hang spring from rigid support

◦ length ℓ and spring constant k

• choose mass m and hook to the spring

• it stretchs distance s down to
equilibrium position

• mark length scale:

◦ x = 0 is equilibrium position
◦ positive x is downward

• x is the displacement from additional
stretch of the spring, i.e. downward
displacement of the mass from its
equilibrium position



Newton’s law

• Newton’s second law is ma = F

• for our first mass-spring model:

m
d2x

dt2
= mg − k(x + s)

◦ but mg = ks so

m
d2x

dt2
= −kx

• “Hooke’s law” Fspring = −kx is a
model for how springs work

◦ not a bad model for small motions
◦ improved model in 5.3

• in practice:
k is determined from mg = ks



(undamped) mass-spring solution

• from last slide: m d2x
dt2

+ kx = 0

• constant coefficient: substitute x(t) = ert and get

mr2 + k = 0 ⇐⇒ r = ±
√

k

m
i = ±ωi

• ω =
√

k
m

• general solution:

x(t) = c1 cos(ωt)+c2 sin(ωt)
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the meaning of ω

• general solution: x(t) = c1 cos(ωt) + c2 sin(ωt)

• suppose t is measured in seconds

• then ω =
√

k
m is frequency of oscillation in radians per second

◦ units are correct because ωt must be in radians

• time T = 2π
ω is period of oscillation

◦ equation ωT = 2π gives the smallest T > 0 so that

cos(ωT ) = cos(0) and sin(ωT ) = sin(0)

◦ . . . general solution has period T



§5.1 exer. #3: “free undamped motion”

3. A mass weighing 24 pounds, attached to the end of a spring,
stretches it 4 inches. Initially the mass is released from rest from a
point 3 inches above the equilibrium position. Find the equation of
motion.



mass/weight English unit stupidity

• “kilograms” is the SI unit for mass m

◦ g = 9.8m/s2 is acceleration of gravity
◦ mg is a force in newtons N = kgm/s2

• “pounds” is a unit for force mg

◦ it is a weight not a mass

• “slugs” are a unit for mass m

◦ old English system . . .
◦ and you need: g = 32 ft/s2



amplitude and phase of x(t)

• for any c1, c2, this formula is a wave or oscillation:

x(t) = c1 cosωt + c2 sinωt

• what is its amplitude?

◦ only an easy question if either c1 = 0 or c2 = 0

Problem: find amplitude A and phase angle ϕ so that

x(t) = c1 cosωt + c2 sinωt = A sin(ωt + ϕ)

Solution: use sin(a+ b) = sin a cos b + cos a sin b so

A sin(ωt + ϕ) = A sin(ωt) cosϕ+ A cos(ωt) sinϕ

=⇒ c1 = A sinϕ, c2 = A cosϕ

=⇒ A =
√
c21 + c22 , tanϕ =

c1
c2



illustration

• example: graph x(t) = A sin(ωt + ϕ) for frequency ω = 2.7,
amplitude A = 3.3, and phase angle ϕ = 0.3π

◦ period T = 2π/ω = 2.51
◦ x(t) = 2.67 cos(ωt) + 1.94 sin(ωt)

0 1 2 3 4 5 6 7
-4

-2

0

2

4

t



exercise #6 in §5.1

• another “free undamped motion” exercise

6. A force of 400 newtons stretches a spring 2 meters. A
mass of 50 kilograms is attached to the end of the spring
and is initially released from the equilibrium position with
an upward velocity of 10 m/s. Find the motion x(t).



damped mass-spring model

• actual mass-springs don’t oscillate forever

• friction or drag is called “damping”

◦ simple case: mass is surrounded by
water or other fluid

• model: damping is proportional to velocity

Fdamping = −βv = −β
dx

dt

◦ β > 0 so damping force opposes motion
◦ same model as drag force for projectiles

in sections 1.3, 3.1

• Newton’s 2nd law again:

m
d2x

dt2
= −kx − β

dx

dt
or mx ′′ = −kx−βx ′

youtu.be/lPg695IXbPo

https://youtu.be/lPg695IXbPo


damped solution method

• recall undamped mass-spring model with ω =
√

k
m :

mx ′′ = −kx ⇐⇒ x ′′ + ω2x = 0

• new damped mass-spring model:

mx ′′ = −kx − βx ′ ⇐⇒ x ′′ + 2λx ′ + ω2x = 0

◦ λ =
β

2m
◦ auxiliary equation from x(t) = ert :

r2 + 2λr + ω2 = 0

◦ has roots:

r =
−2λ±

√
4λ2 − 4ω2

2
= −λ±

√
λ2 − ω2 = r1, r2

◦ are r1, r2 distinct? real? complex?



exercise #27 in §5.1

• “free damped motion” exercise

27. A 1 kilogram mass is attached to a spring whose
constant is 16 N/m. The entire system is submerged in a
liquid that imparts a damping force numerically equal to 10
times the instantaneous velocity. Determine the equations
of motion if the mass is initially released from rest from a
point 1 meter below the equilibrium position.



slight variation comes out different
A 1 kilogram mass is attached to a spring whose constant
is 16 N/m. The entire system is submerged in a liquid
that imparts a damping force numerically equal to 6 times
the instantaneous velocity. Determine the equations of
motion if the mass is initially released from rest from a
point 1 meter below the equilibrium position.



damping cases

d2x

dt2
+ 2λ

dx

dt
+ ω2x = 0

• undamped if λ = 0:

x(t) = c1 cos(ωt) + c2 sin(ωt)

• overdamped if λ2 − ω2 > 0: r1, r2 = −λ±
√

λ2 − ω2

x(t) = e−λt
(
c1e

√
λ2−ω2 t + c2e

−
√
λ2−ω2 t

)
• critically damped if λ2 − ω2 = 0: r1 = r2 = −λ

x(t) = e−λt(c1 + c2t)

• underdamped if λ2 − ω2 < 0: r1, r2 = −λ±
√

ω2 − λ2i

x(t) = e−λt
(
c1 cos(

√
ω2 − λ2 t) + c2 sin(

√
ω2 − λ2 t)

)



damping cases pictured

• consider m = 1, k = 4

• ω =
√

k
m = 2:

d2x

dt2
+ 2λ

dx

dt
+ 4x = 0

• with initial values
x(0) = 1, x ′(0) = 1

• picture cases
λ = 1/4, 2, 5

◦ recall λ = β
2m

◦ so β = 1/2, 4, 10
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a plotting code: massspringplot.m

function massspringplot(m,beta,k,x0,v0,T)

% MASSSPRINGPLOT Make a plot on 0 < t < T of solution to

% m x’’ + beta x’ + k x = 0

% with initial conditions x(0) = x0, x’(0) = v0.

omega = sqrt(k/m); lambda = beta/(2*m);

D = lambda^2 - omega^2;

t = 0:T/200:T; % 200 points enough for smooth graph

if D > 0

fprintf(’overdamped\n’)

Z = sqrt(D); c = [1, 1; -lambda+Z, -lambda-Z] \ [x0; v0];

x = exp(-lambda*t) .* (c(1) * exp(Z*t) + c(2) * exp(-Z*t));

elseif D == 0

fprintf(’critically damped\n’)

c = [x0; v0 + lambda * x0];

x = exp(-lambda*t) .* (c(1) + c(2) * t);

else % D < 0

fprintf(’underdamped\n’)

W = sqrt(-D); c = [x0; (v0 + lambda * x0) / W];

x = exp(-lambda*t) .* (c(1) * cos(W*t) + c(2) * sin(W*t));

end

plot(t,x), grid on, xlabel(’t’), ylabel(’x’)



example

example: solve the IVP

mx ′′ = −kx − βx ′, x(0) = x0, x
′(0) = v0

in the critically-damped case



forced
• the nonhomogeneous version is called a driven, damped

mass-spring where force f (t) is applied to the mass:

m
d2x

dt2
= −kx − β

dx

dt
+ f (t)

• equivalently, after dividing by m:

d2x

dt2
+ 2λ

dx

dt
+ ω2x = F (t)

• a version of this model is a
damped mass-spring formed by
your car

◦ force is applied to the support
and your car is the mass



mass-spring DEs

Newton’s law: ma = F ω form

undamped m d2x
dt2

= −kx d2x
dt2

+ ω2x = 0

damped m d2x
dt2

= −kx − β dx
dt

d2x
dt2

+ 2λdx
dt + ω2x = 0

damped
and driven

m d2x
dt2 = −kx − β dx

dt + f (t) d2x
dt2 + 2λ dx

dt + ω2x = F (t)

notes:

• ω =
√
k/m, λ = β/(2m), F (t) = f (t)/m

• with driving force f (t) the problem is nonhomogeneous

• you would solve the damped and driven problems by undetermined
coefficients to find a particular solution (section 4.4)



exercise #43 in §5.1

Solve the IVP

d2x

dt2
+ ω2x = F0 cos γt, x(0) = 0, x ′(0) = 0

and compute lim
γ→ω

x(t)



exercise #43 pictured
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• idea: resonance can occur in driven mass-spring systems



RLC circuit
• consider the electrical circuit:

• has electical source (E = E (t)), an inductor (L), a resistor
(R), and a capacitor (C )

• a differential equation for the charge q is

L
d2q

dt2
+ R

dq

dt
+

1

C
q = E (t)

• because dq/dt = I , a differential equation for the current I is

L
d2I

dt2
+ R

dI

dt
+

1

C
I = E ′(t)



circuit analogy

mass-spring electical circuit

mass m inductance L
drag β resistance R

spring constant k inverse of capacitance 1/C
applied driving force f (t) applied voltage source E (t)
mx ′′ + βx ′ + kx = f (t) Lq′′ + Rq′ + 1

C q = E (t)

• this is how radios are understood

◦ tuning a radio means choosing the
capacitance C to cause resonance at the
frequency you want to hear from the
input E (t) from the antenna

• based on this idea there were analog
computers which used a configurable
electical circuit to model mechanical
motions



expectations

to learn this material, just listening to a lecture is not enough

• read section 5.1 in the textbook

◦ material on “double spring systems” (p. 201) can be skipped
◦ while I discussed electrical circuits in these slides, I will not ask

about it on quizzes or exams

• do Homework 5.1


