4.4 Nonhomogeneous equations: method of undetermined coefficients
 a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

general solutions to nonhomogeneous DEs

- for an nth-order, linear, and nonhomogeneous DE

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y \stackrel{*}{=} g(x)
$$

- ...the general solution is a sum of the general solution of the associated homogeneous equation

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

plus one particular solution $y_{p}(x)$ of $*$

- the general solution of the homogeneous equation is called the complementary function $y_{c}(x)$
- main structure: $y(x)=y_{c}(x)+y_{p}(x)$ solves $*$
- example 1: find the general solution:

$$
y^{\prime \prime}+4 y=e^{-x}
$$

example 1, cont.

- verify that $y(x)=c_{1} \cos 2 x+c_{2} \sin 2 x+\frac{1}{5} e^{-x}$ solves

$$
y^{\prime \prime}+4 y=e^{-x}
$$

example 1, cont. ${ }^{2}$

- solve the initial value problem:

$$
y^{\prime \prime}+4 y=e^{-x}, \quad y(0)=-1, \quad y^{\prime}(0)=1
$$

example 2

- the idea of "undetermined coefficients" is to try $y_{p}(x)$ which has the same general form as the nonhomogeneity $g(x)$
- example 2 ($\approx \# 5$ in 4.4): find the general solution:

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{2}-2 x
$$

example 3

- example 3 (\#8 in 4.4): find the general solution:

$$
4 y^{\prime \prime}-4 y^{\prime}-3 y=\cos 2 x
$$

trial forms for the particular solution

- we need some guidance on how to guess!
- in words:

For y_{p} try a linear combination of all linearly-independent functions generated by repeated differentiation of $g(x)$.

- as a table:

TABLE 4.4.1 Trial Particular Solutions

$\boldsymbol{g}(\boldsymbol{x})$	Form of $y_{\boldsymbol{p}}$
1. 1 (any constant)	A
2. $5 x+7$	$A x+B$
3. $3 x^{2}-2$	$A x^{2}+B x+C$
4. $x^{3}-x+1$	$A x^{3}+B x^{2}+C x+E$
5. $\sin 4 x$	$A \cos 4 x+B \sin 4 x$
6. $\cos 4 x$	$A \cos 4 x+B \sin 4 x$
7. $e^{5 x}$	$A e^{5 x}$
8. $(9 x-2) e^{5 x}$	$(A x+B) e^{5 x}$
9. $x^{2} e^{5 x}$	$\left(A x^{2}+B x+C\right) e^{5 x}$
10. $e^{3 x} \sin 4 x$	$A e^{3 x} \cos 4 x+B e^{3 x} \sin 4 x$
11. $5 x^{2} \sin 4 x$	$\left(A x^{2}+B x+C\right) \cos 4 x+\left(E x^{2}+F x+G\right) \sin 4 x$
12. $x e^{3 x} \cos 4 x$	$(A x+B) e^{3 x} \cos 4 x+(C x+E) e^{3 x} \sin 4 x$

example 4 shows we still have issues!

- example $4(\approx \# 13$ in 4.4): find the general solution:

$$
y^{\prime \prime}+9 y=2 \cos 3 x
$$

guidance on the hard case

- the problematic case happens when our guess for y_{p} "accidently" contain terms which also appear in y_{c}
- because the left side then annihilates those terms
- ... which blocks us from determining y_{p}
- guidance in words:

If the trial form of y_{p} contains terms that duplicate terms in y_{c} then multiply the trial form by x^{n} where n is the smallest power that eliminates the duplication.

example 5

- example 5 (\#29 in 4.4): solve the initial value problem:

$$
5 y^{\prime \prime}+y^{\prime}=-6 x, \quad y(0)=0, \quad y^{\prime}(0)=-10
$$

example 6

- example 6 (\#32 in 4.4): solve the initial value problem:

$$
y^{\prime \prime}-y=\cosh x, \quad y(0)=2, \quad y^{\prime}(0)=12
$$

example 6, cont.

- the last slide had an impressive calculation, so we should ...
- verify that $y(x)=7 e^{x}-5 e^{-x}+\frac{1}{4} x e^{x}-\frac{1}{4} x e^{-x}$ solves $y^{\prime \prime}-y=\cosh x, y(0)=2, y^{\prime}(0)=12$

clearly

- clearly you need to practice examples, not just me

what we are skipping next

we are skipping the following sections:

- §4.5 Undetermined Coefficients—Annihilator Approach a more abstract view of undetermined coefficients ... but no more powerful than our superposition method
- §4.6 Variation of parameters
a general approach to nonhomogeneous linear equations but one may not be able to compute the integrals you get
- it is somewhat like reduction of order in $\S 4.2$
- §4.7 Cauchy-Euler equations another class of homogeneous differential equations which can be solved via an auxiliary equation
- §4.8 Green's Functions
mostly relevant to boundary value problems (not in Math 302)
- §4.9 Solving Systems of Linear DEs by Elimination a way of solving systems ... which are important . . . but done generally and powerfully in chapter 8

expectations

to learn this material, just listening to a lecture is not enough

- read section 4.4 in the textbook
- do Homework 4.4
- find YouTube worked examples; search "nonhomogeneous differential equations" and "method of undetermined coefficients"

