4.3 Homogeneous linear equations with constant coefficients
 a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

linear, homogeneous, constant-coefficient

- recall from $\S 4.1$ slides that linear DEs which are homogeneous and constant-coefficient always have exponential solutions
- fact: you can always find at least one solution $y=e^{m x}$
- but each of the underlined words is important to this fact
- example 1: solve the ODE IVP

$$
y^{\prime \prime}-2 y^{\prime}-4 y=0, \quad y(-1)=4, y^{\prime}(-1)=0
$$

example 1, finished

example 1: how I did it

- here is how I solved for the constants and made the figure using Matlab:

```
\(\mathrm{w}=1\)-sqrt(5); \(\quad \mathrm{z}=1+\) sqrt(5);
\(A=\left[\exp (-w), \exp (-z) ; w^{*} \exp (-w), \quad z * \exp (-z)\right] ;\)
b \(=[4 ; 0]\);
\(c=A \backslash b\)
\(\%\) get: \(c(1)=0.8409, c(2)=28.119\)
\(\mathrm{x}=-2: .01: 1\);
\(\mathrm{y}=\mathrm{c}(1) * \exp (\mathrm{w} * \mathrm{x})+\mathrm{c}(2) * \exp (\mathrm{z} * \mathrm{x})\);
plot(x,y), grid on, xlabel x, ylabel y
axis([-2 0.5050\(])\)
hold on, plot(-1,4,'ko','markersize',12), hold off
```

- I am committed to helping you use a computer for math!

example 2

- example 2: find the general solution of the ODE

$$
y^{\prime \prime}+y=0
$$

Euler's helpful identity

- Euler recognized the connection between imaginary numbers and trig functions:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

- exercise: Explain Euler's identity above using the Taylor series of $e^{x}, \cos x, \sin x$ at basepoint $x_{0}=0$. Also draw a picture.
- from Euler's identity we also know

$$
e^{a+i b}=e^{a}(\cos b+i \sin b)
$$

- example 3: find the general solution of the ODE

$$
y^{\prime \prime}-4 y^{\prime}+5 y=0
$$

the major facts of $\S 4.3$

for constant-coefficient and homogeneous linear ODEs

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

- substitution of $y=e^{m x}$ yields (polynomial) auxiliary equation

$$
a_{n} m^{n}+a_{n-1} m^{n-1}+\cdots+a_{1} m+a_{0}=0
$$

- any polynomial eqn. has at least one complex root (solution)
- auxiliary eqn. has at least 1 and at most n distinct roots
- some roots may be repeated
- there is a recipe (next slide!) which generates a fundamental set of n real solutions and a general solution to the ODE:

$$
y_{1}(x), \ldots, y_{n}(x) \quad \Longrightarrow \quad y(x)=c_{1} y_{1}(x)+\cdots+c_{n} y_{n}(x)
$$

main recipe of $\S 4.3$

find all roots of the auxiliary equation

$$
a_{n} m^{n}+a_{n-1} m^{n-1}+\cdots+a_{1} m+a_{0}=0
$$

and then build a fundamental solution set this way:
case I: if m is a real root then

$$
e^{m x} \text { is in the set }
$$

case II: if m is a real root which is repeated k times then

$$
e^{m x}, x e^{m x}, \ldots, x^{k-1} e^{m x} \text { are in the set }
$$

case III: if $m=a \pm i b$ is a complex root then

$$
e^{a x} \cos (b x), e^{a x} \sin (b x) \text { are in the set }
$$

exercise 5 in $\S 4.3$

- exercise 5: find the general solution of the second-order DE

$$
y^{\prime \prime}+8 y^{\prime}+16 y=0
$$

exercise 23 in §4.3

- exercise 23: find the general solution of the higher-order DE

$$
y^{(4)}+y^{\prime \prime \prime}+y^{\prime \prime}=0
$$

exercise 55 in $\S 4.3$

- exercise 55: find a constant-coefficient, homogeneous linear DE whose general solution is

$$
y(x)=c_{1} e^{-x} \cos x+c_{2} e^{-x} \sin x
$$

like exercise 69 in $\S 4.3$

- like exercise 69: solve the ODE IVP

$$
\begin{aligned}
& 2 y^{(4)}+13 y^{\prime \prime \prime}+21 y^{\prime \prime}+2 y^{\prime}-8 y=0 \\
& y(0)=-2, y^{\prime}(0)=6, y^{\prime \prime}(0)=3, y^{\prime \prime \prime}(0)=\frac{1}{2}
\end{aligned}
$$

hint. you may use a computer algebra system (CAS)

exercise 69: how to do it

```
>> m = roots([2,13,21,2,-8])'
m =
    -4 -2 
>> A = [1 1 1 1 1; m; m.^2; m.^3]
A =
\begin{tabular}{rrrr}
1 & 1 & 1 & 1 \\
-4 & -2 & -1 & 0.5 \\
16 & 4 & 1 & 0.25 \\
-64 & -8 & -1 & 0.125
\end{tabular}
>> b = [l-2 6 3 0.5]';
>> c = A \ b
c =
    -0.48148
        5.4
        -12.222
        5.3037
```

conclusion: a computer is very effective . . . if you know where you are going

hyperbolic functions

- Euler's identity $e^{i \theta}=\cos \theta+i \sin \theta$, for complex exponentials, has an analog for real exponentials
- by definition:

$$
\begin{aligned}
\cosh x & =\frac{e^{x}+e^{-x}}{2} \\
\sinh x & =\frac{e^{x}-e^{-x}}{2}
\end{aligned}
$$

- the even and odd parts of the exponential, resp.
- called hyperbolic functions

- it is easy to see that
- $e^{x}=\cosh x+\sinh x$
- $(\cosh x)^{\prime}=\sinh x, \quad(\sinh x)^{\prime}=\cosh x$
- $y=c_{1} \cosh x+c_{2} \sinh x$ is a general solution to $y^{\prime \prime}-y=0$

some nice cases

- the following general solutions can all be computed by substituting $y=e^{m x}$, and getting the auxiliary equation, etc.
- ... but it is good to quickly apply these special cases:

\[

\]

expectations

to learn this material, just listening to a lecture is not enough

- read section 4.3 in the textbook
- find YouTube videos on "second order differential equations"
...then look for the constant-coefficient case
- for $\S 4.3$ you at least need to know these terms:

```
homogeneous
linearly (in)dependent
Wronskian
fundamental set of solutions
linear combination
general solution
```

- when we go back to $\S 4.2$: why does the repeated-roots case generate additional linearly-independent solutions via extra factors of " x "?

