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linear, homogeneous, constant-coefficient

• recall from §4.1 slides that linear DEs which are homogeneous
and constant-coefficient always have exponential solutions

◦ fact: you can always find at least one solution y = emx

◦ but each of the underlined words is important to this fact

• example 1: solve the ODE IVP

y ′′ − 2y ′ − 4y = 0, y(−1) = 4, y ′(−1) = 0



example 1, finished
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example 1: how I did it

• here is how I solved for the constants and made the figure
using Matlab:

w = 1-sqrt(5); z = 1+sqrt(5);

A = [exp(-w), exp(-z); w*exp(-w), z*exp(-z)];

b = [4; 0];

c = A \ b % get: c(1)=0.8409, c(2)=28.119

x = -2:.01:1;

y = c(1) * exp(w*x) + c(2) * exp(z*x);

plot(x,y), grid on, xlabel x, ylabel y

axis([-2 0.5 0 50])

hold on, plot(-1,4,’ko’,’markersize’,12), hold off

• I am committed to helping you use a computer for math!



example 2

• example 2: find the general solution of the ODE

y ′′ + y = 0



Euler’s helpful identity
• Euler recognized the connection between imaginary numbers
and trig functions:

e iθ = cos θ + i sin θ

• exercise: Explain Euler’s identity above using the Taylor series
of ex , cos x , sin x at basepoint x0 = 0. Also draw a picture.



example 3
• from Euler’s identity we also know

ea+ib = ea(cos b + i sin b)

• example 3: find the general solution of the ODE

y ′′ − 4y ′ + 5y = 0



the major facts of §4.3

for constant-coefficient and homogeneous linear ODEs

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0

• substitution of y = emx yields (polynomial) auxiliary equation

anm
n + an−1m

n−1 + · · ·+ a1m + a0 = 0

• any polynomial eqn. has at least one complex root (solution)

◦ auxiliary eqn. has at least 1 and at most n distinct roots
◦ some roots may be repeated

• there is a recipe (next slide!) which generates a fundamental
set of n real solutions and a general solution to the ODE:

y1(x), . . . , yn(x) =⇒ y(x) = c1y1(x) + · · ·+ cnyn(x)



main recipe of §4.3

find all roots of the auxiliary equation

anm
n + an−1m

n−1 + · · ·+ a1m + a0 = 0

and then build a fundamental solution set this way:

case I: if m is a real root then

emx is in the set

case II: if m is a real root which is repeated k times then

emx , xemx , . . . , xk−1emx are in the set

case III: if m = a± ib is a complex root then

eax cos(bx), eax sin(bx) are in the set



exercise 5 in §4.3

• exercise 5: find the general solution of the second-order DE

y ′′ + 8y ′ + 16y = 0



exercise 23 in §4.3

• exercise 23: find the general solution of the higher-order DE

y (4) + y ′′′ + y ′′ = 0



exercise 55 in §4.3
• exercise 55: find a constant-coefficient, homogeneous linear
DE whose general solution is

y(x) = c1e
−x cos x + c2e

−x sin x



like exercise 69 in §4.3

• like exercise 69: solve the ODE IVP

2y (4) + 13y ′′′ + 21y ′′ + 2y ′ − 8y = 0

y(0) = −2, y ′(0) = 6, y ′′(0) = 3, y ′′′(0) = 1
2

hint. you may use a computer algebra system (CAS)



exercise 69: how to do it

>> m = roots([2,13,21,2,-8])’

m =

-4 -2 -1 0.5

>> A = [1 1 1 1; m; m.^2; m.^3]

A =

1 1 1 1

-4 -2 -1 0.5

16 4 1 0.25

-64 -8 -1 0.125

>> b = [-2 6 3 0.5]’;

>> c = A \ b

c =

-0.48148

5.4

-12.222

5.3037

conclusion: a computer is very effective . . . if you know where you
are going



hyperbolic functions

• Euler’s identity e iθ = cos θ + i sin θ, for complex exponentials,
has an analog for real exponentials

• by definition:

cosh x =
ex + e−x

2

sinh x =
ex − e−x

2
◦ the even and odd parts of

the exponential, resp.

◦ called hyperbolic functions
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• it is easy to see that

◦ ex = cosh x + sinh x
◦ (cosh x)′ = sinh x , (sinh x)′ = cosh x
◦ y = c1 cosh x + c2 sinh x is a general solution to y ′′ − y = 0



some nice cases

• the following general solutions can all be computed by
substituting y = emx , and getting the auxiliary equation, etc.

• . . . but it is good to quickly apply these special cases:

has general
solution

y ′ = ky −→ y = Aekx

y ′′ + k2y = 0 −→ y = c1 cos(kx) + c2 sin(kx)

y ′′ − k2y = 0 −→

 y = c1e
kx + c2e

−kx

or
y = b1 cosh(kx) + b2 sinh(kx)


y ′′ = 0 −→ y = c1 + c2x



expectations

to learn this material, just listening to a lecture is not enough

• read section 4.3 in the textbook

• find YouTube videos on “second order differential equations”
. . . then look for the constant-coefficient case

• for §4.3 you at least need to know these terms:

homogeneous
linearly (in)dependent
Wronskian
fundamental set of solutions
linear combination
general solution

• when we go back to §4.2: why does the repeated-roots case
generate additional linearly-independent solutions via extra
factors of “x”?


