4.2 Reduction of order a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

a 2nd-order example

- for this example, $\S 4.3$ methods do not work
... but we can find the solution anyway
- example 1: find the general solution: $x y^{\prime \prime}+y^{\prime}=0$

the $\S 4.3$ rule needing explanation

- the next example is one we do know how to solve
... but via a $\S 4.3$ rule for which I owe you justification
- example 2: find the general solution: $y^{\prime \prime}-6 y^{\prime}+9 y=0$

reducing the order 1: first illustration

- reduction of order is a technique:
- substitute $y(x)=u(x) y_{1}(x)$
- derive a DE for u which has no zeroth-order term
- solve a first-order equation for $w=u^{\prime}$
- key understanding: the purpose is to find another linearly-independent solution given you have $y_{1}(x)$
- example 2 again: $y_{1}(x)=e^{3 x}$ is known; find another $y^{\prime \prime}-6 y^{\prime}+9 y=0$

reducing the order 2: general case

suppose $y_{1}(x)$ is a solution to 2 nd-order homogeneous DE

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y \stackrel{*}{=} 0
$$

and we seek another solution of the form $y(x)=u(x) y_{1}(x)$:

- compute $y^{\prime}=u^{\prime} y_{1}+u y_{1}^{\prime}$ and $y^{\prime \prime}=u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}$

$$
\text { check it: } \quad y^{\prime \prime}=
$$

- substitute into $*$:

$$
\left(u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}\right)+P\left(u^{\prime} y_{1}+u y_{1}^{\prime}\right)+Q u y_{1}=0
$$

- group by derivatives on u :

$$
y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P y_{1}\right) u^{\prime}+\left(y_{1}^{\prime \prime}+P y_{1}^{\prime}+Q y_{1}\right) u=0
$$

- term in green is zero (why?) so u solves

$$
y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P y_{1}\right) u^{\prime}=0
$$

reducing the order 3: a first-order equation

- we are seeking a solution of the form $y=u y_{1}$, and u solves

$$
y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P y_{1}\right) u^{\prime}=0
$$

- there is no zeroth-order term so we can solve it
- the equation is first-order and separable for $w=u^{\prime}$:

$$
\begin{gathered}
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+P y_{1}\right) w=0 \\
\frac{d w}{d x}=-\frac{\left(2 y_{1}^{\prime}+P y_{1}\right) w}{y_{1}} \\
\frac{d w}{w}=-\left(2 \frac{y_{1}^{\prime}}{y_{1}}+P\right) d x \\
\int \frac{d w}{w}=-2 \int \frac{y_{1}^{\prime}(x)}{y_{1}(x)} d x-\int P(x) d x
\end{gathered}
$$

reducing the order 4: the second solution

- continuing:

$$
\begin{gathered}
\int \frac{d w}{w}=-2 \int \frac{y_{1}^{\prime}(x)}{y_{1}(x)} d x-\int P(x) d x \\
\ln |w(x)|=-2 \ln \left|y_{1}(x)\right|-\int P(x) d x+C \\
w(x)=c_{1} \frac{e^{-\int P(x) d x}}{y_{1}(x)^{2}}
\end{gathered}
$$

- recall $u^{\prime}=w$; thus integrating again gives

$$
u(x)=c_{1} \int \frac{e^{-\int P(x) d x}}{y_{1}(x)^{2}} d x+c_{2}
$$

- the second solution is the new part of $y=u y_{1}$:

$$
y_{2}(x)=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{y_{1}(x)^{2}} d x
$$

example 4

- in this example we tell a complete story: we guess a first solution and then derive a second one by reduction of order
- example 4: find the general solution (for $x>0$)

$$
x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0
$$

example 4, finished

$$
y(x)=c_{1} x^{-2}+c_{2} x^{-2} \ln x
$$

expectations

to learn this material, just listening to a lecture is not enough

- read section 4.2 in the textbook
- note example 4 is a Cauchy-Euler type of differential equation
- covered in $\S 4.7$... which we will otherwise skip
- to do reduction of order on a quiz or exam you have a choice
- do you
(1) memorize $y_{2}(x)=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{y_{1}(x)^{2}} d x$?
(2) or substitute $y(x)=u(x) y_{1}(x)$ and see how it comes out?

