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outline

plan for these slides

• a bit of review of first-order linear equations (§2.3)

• a first look at how to solve constant-coefficient, second-order
linear equations (from §4.3)

• a whole bunch of new language for higher-order linear
equations

◦ basically, §4.1 is a lot of new words



first-order linear DEs: a review
• recall first-order linear DEs:

a1(x)y
′ + a0(x)y = g(x)

• one may divide by the leading coefficient:

y ′ + P(x)y = f (x)

◦ this requires leading coefficient a1(x) to not to be zero on the
interval where we are solving

• special case 1 (easiest to solve): constant-coefficient and
homogeneous

y ′ + by = 0

◦ homogeneous means the right-hand side is zero
◦ constant-coefficient means b is constant
◦ the solution is (“by inspection”)

y(x) = Ae−bx



first-order linear review cont.

• special case 2: homogeneous (but otherwise general)

y ′ + P(x)y = 0

◦ now we need an integrating factor µ(x) = eQ(x) where
Q(x) =

∫
P(x) dx is any antiderivative of P(x)

◦ multiplying by µ the equation becomes (µ(x)y(x))′ = 0
◦ thus

eQ(x)y(x) = A

◦ thus the solution is

y(x) = Ae−Q(x)

◦ homogeneous: a multiple of a solution is still a solution



first-order linear review cont.2

• general nonhomogeneous case: first-order linear

y ′ + P(x)y = f (x)

◦ need same integrating factor; multiplying by µ = eQ(x) yields
(µ(x)y(x))′ = µ(x)f (x)

◦ integrate:

eQ(x)y(x) = A+

∫ x

a

eQ(t)f (t) dt

• where Q(x) =
∫
P(x) dx is any antiderivative of P(x)

• written to emphasize right side has a free constant A

◦ thus the solution is

y(x) = Ae−Q(x) + e−Q(x)

∫ x

a

eQ(t)f (t) dt

◦ solution is the homogeneous solution plus a particular solution



higher-order linear DEs: overview

main idea of §4.1: for nth-order linear equations

an(x)y
(n) + an−1(x)y

(n−1) + · · ·+ a1(x)y
′ + a0(x)y = g(x),

new versions of all previous comments in red still apply!



overview cont.

an(x)y
(n) + an−1(x)y

(n−1) + · · ·+ a1(x)y
′ + a0(x)y

∗
= g(x)

1 if an(x) ̸= 0 then we can divide by it:

y (n) + bn−1(x)y
(n−1) + · · ·+ b1(x)y

′ + b0(x)y = f (x)

2 easiest case (§4.3) is homogeneous and constant coefficient

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0

3 for the associated homogeneous equation to ∗,

an(x)y
(n) + an−1(x)y

(n−1) + · · ·+ a1(x)y
′ + a0(x)y = 0

any multiple of, or sum of, solutions is again a solution

4 solutions of ∗ are always solutions of the homogeneous
equation plus a particular solution



solutions exist

Theorem 4.1.1

• Consider the linear DE

an(x)y
(n) + an−1(x)y

(n−1) + · · ·+ a1(x)y
′ + a0(x)y = g(x)

If the functions aj(x) and g(x) are continuous on some
interval, and if an(x) ̸= 0 on that interval, then solutions exist.

• Furthermore, if x0 is in that interval then there is exactly one
solution which satisfies the initial values

y(x0) = y0

y ′(x0) = y1
...

y (n−1)(x0) = yn−1



linear, homogeneous, constant-coefficient

• furthermore, linear DEs which are homogeneous and
constant-coefficient always have exponential solutions

◦ you can always find at least one solution y = emx

◦ and multiples and sums of solutions are solutions

• example 1: solve, by trying y(x) = emx , the equation

y ′′ + 4y ′ − 5y = 0

fundamental set of solutions:

general solution:



example 2

• example 2: solve, by trying y(x) = emx , the equation

y ′′′ + 3y ′′ − y ′ − 3y = 0

fundamental set of solutions:

general solution:



linear combination

• examples 1 and 2 are from §4.3 (next) but they let me
illustrate the language introduced in §4.1 ←− read this!

• for example,

Theorem 4.1.2
If y1(x), y2(x), . . . , yn(x) solve a linear and homogeneous DE

an(x)y
(n) + an−1(x)y

(n−1) + · · ·+ a1(x)y
′ + a0(x)y = 0

then any linear combination

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x)

is also a solution.

• idea: for linear and homogeneous DEs you can form a more
general solution from any set of solutions

◦ see examples 1 and 2



linear dependence and independence

• a set of functions {f1(x), . . . , fn(x)} is linearly dependent if
you can combine with constants c1, . . . , cn, some of which
are not zero, and get the zero function:

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0

• a set is linearly independent if it is not linearly dependent

• example:

f1(x) = x2 + x , f2(x) = x2 − x , f3(x) = 5x

are linearly dependent because

1 · f1(x)− 1 · f2(x)−
2

5
· f3(x) = 0



example 3

• recall from example 1 that f1(x) = ex and f2(x) = e−5x are
solutions to y ′′ + 4y ′ − 5y = 0

• example 3: Find a solution of the initial value problem

y ′′ + 4y ′ − 5y = 0, y(0) = 2, y ′(0) = −3

• this calculation works because {f1(x), f2(x)} = {ex , e−5x} is a
linearly-independent set



checking linear independence
• generally it would require linear algebra thinking to check
whether a set of functions is linearly independent

• but there is a determinant to save you from thinking!

• definition. given functions f1(x), . . . , fn(x) the Wronskian is
the determinant where the rows are derivatives:

W (f1, . . . , fn) = det




f1 f2 . . . fn
f ′1 f ′2 . . . f ′n
...

...
...

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n




• example 4: find
the Wronskian of
{e−3x , e−x , ex}



role of the Wronskian

Theorem 4.1.3
Suppose {y1(x), y2(x), . . . , yn(x)} are solutions of a homogeneous
linear nth-order differential equation on some interval. Then

• The set of solutions is linearly-independent if and only if the
Wronskian W (y1, . . . , yn) is nonzero on the interval.

• If the Wronskian W (y1, . . . , yn) is nonzero at some point on
the interval then it is nonzero on the whole interval.



fundamental set

definition.
a set of n linearly-independent solutions {y1(x), y2(x), . . . , yn(x)}
of the homogeneous linear nth-order differential equation

an(x)y
(n) + an−1(x)y

(n−1) + · · ·+ a1(x)y
′ + a0(x)y = 0

is a fundamental set of solutions

• once you have a fundamental set then the general solution of
the above DE is

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x)

• if you have fewer than n solutions, or they are not linearly
independent, then the linear combination is a solution, but
not fully general



exercise 25 in §4.1

• exercise #25: Verify that the functions form a fundamental
set of solutions on the interval. Form the general solution.

y ′′ − 2y ′ + 5y = 0, {ex cos 2x , ex sin 2x}, (−∞,∞)



exercise 27 in §4.1

• exercise #27: Verify that the functions form a fundamental
set of solutions on the interval. Form the general solution.

x2y ′′ − 6xy ′ + 12y = 0, {x3, x4}, (0,∞)



expectations

to learn this material, just listening to a lecture is not enough

• read section 4.1 in the textbook

• know the meaning/definitions of:

homogeneous linearly independent
nonhomogeneous Wronskian
associated homogeneous equation fundamental set of solutions
linear combination general solution
superposition particular solution
linearly dependent complementary function

• the homogeneous case will be central for a while (§4.3, 4.2)

• more on nonhomogeneous equations in §4.4

• too much new language in §4.1!


