4.1 Higher-order linear equations: first examples and preliminaries

a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

outline

plan for these slides

- a bit of review of first-order linear equations (§2.3)
- a first look at how to solve constant-coefficient, second-order linear equations (from §4.3)
- a whole bunch of new language for higher-order linear equations
- basically, $\S 4.1$ is a lot of new words

first-order linear DEs: a review

- recall first-order linear DEs:

$$
a_{1}(x) y^{\prime}+a_{0}(x) y=g(x)
$$

- one may divide by the leading coefficient:

$$
y^{\prime}+P(x) y=f(x)
$$

- this requires leading coefficient $a_{1}(x)$ to not to be zero on the interval where we are solving
- special case 1 (easiest to solve): constant-coefficient and homogeneous

$$
y^{\prime}+b y=0
$$

- homogeneous means the right-hand side is zero
- constant-coefficient means b is constant
- the solution is ("by inspection")

$$
y(x)=A e^{-b x}
$$

first-order linear review cont.

- special case 2: homogeneous (but otherwise general)

$$
y^{\prime}+P(x) y=0
$$

- now we need an integrating factor $\mu(x)=e^{Q(x)}$ where $Q(x)=\int P(x) d x$ is any antiderivative of $P(x)$
- multiplying by μ the equation becomes $(\mu(x) y(x))^{\prime}=0$
- thus

$$
e^{Q(x)} y(x)=A
$$

- thus the solution is

$$
y(x)=A e^{-Q(x)}
$$

- homogeneous: a multiple of a solution is still a solution

first-order linear review cont. ${ }^{2}$

- general nonhomogeneous case: first-order linear

$$
y^{\prime}+P(x) y=f(x)
$$

- need same integrating factor; multiplying by $\mu=e^{Q(x)}$ yields $(\mu(x) y(x))^{\prime}=\mu(x) f(x)$
- integrate:

$$
e^{Q(x)} y(x)=A+\int_{a}^{x} e^{Q(t)} f(t) d t
$$

- where $Q(x)=\int P(x) d x$ is any antiderivative of $P(x)$
- written to emphasize right side has a free constant A
- thus the solution is

$$
y(x)=A e^{-Q(x)}+e^{-Q(x)} \int_{a}^{x} e^{Q(t)} f(t) d t
$$

- solution is the homogeneous solution plus a particular solution

higher-order linear DEs: overview

main idea of $\S 4.1$: for n th-order linear equations

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x)
$$

new versions of all previous comments in red still apply!

overview cont.

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y \stackrel{*}{=} g(x)
$$

(1) if $a_{n}(x) \neq 0$ then we can divide by it:

$$
y^{(n)}+b_{n-1}(x) y^{(n-1)}+\cdots+b_{1}(x) y^{\prime}+b_{0}(x) y=f(x)
$$

(2) easiest case ($\S 4.3$) is homogeneous and constant coefficient

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

(3) for the associated homogeneous equation to *,

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

any multiple of, or sum of, solutions is again a solution
(4) solutions of $*$ are always solutions of the homogeneous equation plus a particular solution

solutions exist

Theorem 4.1.1

- Consider the linear DE

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x)
$$

If the functions $a_{j}(x)$ and $g(x)$ are continuous on some interval, and if $a_{n}(x) \neq 0$ on that interval, then solutions exist.

- Furthermore, if x_{0} is in that interval then there is exactly one solution which satisfies the initial values

$$
\begin{gathered}
y\left(x_{0}\right)=y_{0} \\
y^{\prime}\left(x_{0}\right)=y_{1} \\
\vdots \\
y^{(n-1)}\left(x_{0}\right)=y_{n-1}
\end{gathered}
$$

linear, homogeneous, constant-coefficient

- furthermore, linear DEs which are homogeneous and constant-coefficient always have exponential solutions
- you can always find at least one solution $y=e^{m x}$
- and multiples and sums of solutions are solutions
- example 1: solve, by trying $y(x)=e^{m x}$, the equation

$$
y^{\prime \prime}+4 y^{\prime}-5 y=0
$$

fundamental set of solutions:
general solution:

example 2

- example 2: solve, by trying $y(x)=e^{m x}$, the equation

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}-y^{\prime}-3 y=0
$$

fundamental set of solutions:
general solution:

linear combination

- examples 1 and 2 are from $\S 4.3$ (next) but they let me illustrate the language introduced in $\S 4.1 \longleftarrow$ read this!
- for example,

Theorem 4.1.2
If $y_{1}(x), y_{2}(x), \ldots, y_{n}(x)$ solve a linear and homogeneous DE

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

then any linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

is also a solution.

- idea: for linear and homogeneous DEs you can form a more general solution from any set of solutions
- see examples 1 and 2

linear dependence and independence

- a set of functions $\left\{f_{1}(x), \ldots, f_{n}(x)\right\}$ is linearly dependent if you can combine with constants c_{1}, \ldots, c_{n}, some of which are not zero, and get the zero function:

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0
$$

- a set is linearly independent if it is not linearly dependent
- example:

$$
f_{1}(x)=x^{2}+x, \quad f_{2}(x)=x^{2}-x, \quad f_{3}(x)=5 x
$$

are linearly dependent because

$$
1 \cdot f_{1}(x)-1 \cdot f_{2}(x)-\frac{2}{5} \cdot f_{3}(x)=0
$$

example 3

- recall from example 1 that $f_{1}(x)=e^{x}$ and $f_{2}(x)=e^{-5 x}$ are solutions to $y^{\prime \prime}+4 y^{\prime}-5 y=0$
- example 3: Find a solution of the initial value problem

$$
y^{\prime \prime}+4 y^{\prime}-5 y=0, \quad y(0)=2, \quad y^{\prime}(0)=-3
$$

- this calculation works because $\left\{f_{1}(x), f_{2}(x)\right\}=\left\{e^{x}, e^{-5 x}\right\}$ is a linearly-independent set

checking linear independence

- generally it would require linear algebra thinking to check whether a set of functions is linearly independent
- but there is a determinant to save you from thinking!
- definition. given functions $f_{1}(x), \ldots, f_{n}(x)$ the Wronskian is the determinant where the rows are derivatives:

$$
W\left(f_{1}, \ldots, f_{n}\right)=\operatorname{det}\left(\left[\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{n}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \ldots & f_{n}^{(n-1)}
\end{array}\right]\right)
$$

- example 4: find the Wronskian of $\left\{e^{-3 x}, e^{-x}, e^{x}\right\}$

role of the Wronskian

Theorem 4.1.3
Suppose $\left\{y_{1}(x), y_{2}(x), \ldots, y_{n}(x)\right\}$ are solutions of a homogeneous linear n th-order differential equation on some interval. Then

- The set of solutions is linearly-independent if and only if the Wronskian $W\left(y_{1}, \ldots, y_{n}\right)$ is nonzero on the interval.
- If the Wronskian $W\left(y_{1}, \ldots, y_{n}\right)$ is nonzero at some point on the interval then it is nonzero on the whole interval.

fundamental set

definition.

a set of n linearly-independent solutions $\left\{y_{1}(x), y_{2}(x), \ldots, y_{n}(x)\right\}$ of the homogeneous linear n th-order differential equation

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

is a fundamental set of solutions

- once you have a fundamental set then the general solution of the above DE is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

- if you have fewer than n solutions, or they are not linearly independent, then the linear combination is a solution, but not fully general

exercise 25 in $\S 4.1$

- exercise \#25: Verify that the functions form a fundamental set of solutions on the interval. Form the general solution.

$$
y^{\prime \prime}-2 y^{\prime}+5 y=0, \quad\left\{e^{x} \cos 2 x, e^{x} \sin 2 x\right\}, \quad(-\infty, \infty)
$$

exercise 27 in $\S 4.1$

- exercise \#27: Verify that the functions form a fundamental set of solutions on the interval. Form the general solution.

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+12 y=0, \quad\left\{x^{3}, x^{4}\right\}, \quad(0, \infty)
$$

expectations

to learn this material, just listening to a lecture is not enough

- read section 4.1 in the textbook
- know the meaning/definitions of:
homogeneous
nonhomogeneous
associated homogeneous equation linear combination
superposition
linearly dependent
linearly independent
Wronskian
fundamental set of solutions
general solution
particular solution
complementary function
- the homogeneous case will be central for a while $(\S 4.3,4.2)$
- more on nonhomogeneous equations in $\S 4.4$
- too much new language in §4.1!

