3.3 Systems of first-order ODEs are models of everything a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

first-order systems

- a system of two first-order equations:

$$
\begin{aligned}
& \frac{d x}{d t}=f(t, x, y) \\
& \frac{d y}{d t}=g(t, x, y)
\end{aligned}
$$

- the solution is the pair of functions $x(t), y(t)$
- we say system is coupled if f depends on y or g depends on x
- f and g can be any formulas; here's a silly example:

$$
\begin{aligned}
& \frac{d x}{d t}=t^{5}+x^{6}+y^{7} \\
& \frac{d y}{d t}=\arctan (y+\sin (x+\cos (t)))
\end{aligned}
$$

easily-solvable example

- example 1. find the general solution to

$$
\begin{aligned}
& \frac{d x}{d t}=-2 x \\
& \frac{d y}{d t}=x-y
\end{aligned}
$$

solution.

the system can be any size

- notation for two equations:

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=g_{1}\left(t, x_{1}, x_{2}\right) \\
& \frac{d x_{2}}{d t}=g_{2}\left(t, x_{1}, x_{2}\right)
\end{aligned}
$$

- system of n equations:

$$
\begin{gathered}
\frac{d x_{1}}{d t}=g_{1}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
\frac{d x_{2}}{d t}=g_{2}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
\vdots \\
\frac{d x_{n}}{d t}=g_{n}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)
\end{gathered}
$$

- solution is set of n functions $x_{1}(t), x_{2}(t), \ldots, x_{n}(t)$
- in practical, modern fluids simulations: $n \geq 10^{6}$
- such systems are also the physics in video games

most math models are systems of DEs

- systems of ODEs are common
- ... because most real things involve
- many parts
- changing in time
o interacting with each other

$$
\begin{array}{r}
x_{1}, \ldots, x_{n} \\
\frac{d x_{i}}{d t}=g_{i}(\ldots)
\end{array}
$$

g_{i} depends on x_{j}

- everything is modeled this way:
(1) populations of hares and lynx
(2) the galaxy
(3) your body

radioactive decay series

- read about it in §3.3
- often one-way coupled
- simple cases can be easy/solvable (e.g. example 1)

The Thorium-232 Decay Chain

connected tanks

- example 2. Three 100 gallon tanks have brine solutions and are connected as shown. The tanks are always full. $x_{1}(t), x_{2}(t), x_{3}(t)$ pounds of salt are in each tank, respectively.
(a) What equations must hold for the flow rates a, b, c, d, e, f ?
(b) Suppose $a=2, d=4, e=5$ in gal $/ \mathrm{min}$. Compute b, c, f.
(c) Write a first-order ODE system for $x_{1}(t), x_{2}(t), x_{3}(t)$.

connected tanks, cont.

 solution.

higher order equations become systems

- any individual (a.k.a. scalar) ODE can be turned into a first-order system
- for example, a damped nonlinear pendulum for $\theta(t)$:

$$
m \ell \theta^{\prime \prime}+\beta \theta^{\prime}+m g \sin \theta=0
$$

becomes this system:

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=-\left(\frac{\beta}{m \ell}\right) x_{2}-\left(\frac{g}{\ell}\right) \sin \left(x_{1}\right)
\end{aligned}
$$

- just name θ as x_{1} and name θ^{\prime} as x_{2}
- solve for the derivative because that is the standard form

a 4th order ODE as a system

- example 3. write the following fourth-order ODE as a first-order system:

$$
y^{(4)}-4 y^{\prime \prime \prime}+7 y^{\prime \prime}+10 y^{\prime}-y=\sin (3 t)
$$

solution.

snowshoe hares and lynx

- consider this "Lotka-Volterra" model

$$
\begin{aligned}
& \frac{d x}{d t}=0.7 x-1.3 x y \\
& \frac{d y}{d t}=x y-y
\end{aligned}
$$

- $x(t)$ is the number of prey
- $y(t)$ is the number of predators
- constants merely representative

- example 4. solve numerically for $0 \leq t \leq 60$:

$$
\begin{array}{ll}
\frac{d x}{d t}=0.7 x-1.3 x y & x(0)=1 \\
\frac{d y}{d t}=x y-y & y(0)=1
\end{array}
$$

solution.
>> f = @(t,z) [0.7*z(1)-1.3*z(1)*z(2); z(1)*z(2)-z(2)];
>> [tt,zz] = ode45(f,0:.1:60,[1;1]);
>> plot(tt,zz), xlabel t
>> legend('prey','predators')

phase plane: a different view

- a different view is to plot $x=z_{1}$ versus $y=z_{2}$
>> figure(2)
>> plot(zz(:,1),zz(:,2),'k') \% curve in black
>> xlabel('x(t) prey'), ylabel('y(t) predators')

ODE systems from circuits

- the voltage $v(t)$ and current $i(t)$ in an electrical circuits changes in time
- each element in a circuit (network) has a little model:

resistor	$v=i R$	
inductor	$v=L \frac{d i}{d t}$	$\}_{2}^{L}$
capacitor	$v=\frac{q}{C}$	$\quad \frac{1}{T} C$

- Kirchoff's laws allow you to assemble systems of ODEs from these elements
- building such models is the heart of electical engineering

a linear ODE system for an RLC circuit

- I'll do an example, but you are not responsible for doing this!
- example 5. construct a system of first-order ODEs for the currents i_{1}, i_{2}, i_{3} in this electical circuit

expectations

to learn this material, just listening to a lecture is not enough

- read section 3.3
- what are you actually responsible for? be able to do computations like in examples 1-4
- ... and be able to do radioactive decay series examples - read the section!
- you are not responsible for electrical circuits as in example 5
- do Homework 3.3

