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where we stand

• we now have methods for generating by-hand solutions to
first-order differential equations:

2.2 separable equations: y ′ = g(x)h(y)
2.3 linear equations: y ′ + P(x)y = f (x)
2.4 exact equations: M dx + N dy = 0 where ∂M

∂y = ∂N
∂x

• there are further methods . . . such as in section 2.5

◦ but we are skipping §2.5; its methods are weak

• where do we stand?:

◦ there are some problems we can do . . .
◦ but often our by-hand calculus/algebra techniques don’t work

• this situation is permanent



example 1
• Example 1. solve the initial value problem

dy

dt
= t − y2, y(0) = 1

in particular, find y(4)

Solution version 0: Explain why 2.2–2.4 methods don’t apply.



example 1, cont.

Solution version 1: Solve it using a direction field and a pencil.

• this is only approximate



example 1, cont. cont.

Solution version 2: Make a computer follow the direction field.

• this is still only approximate because we go straight



example 1, cont. cont. cont.

Solution version 3: The direction field is not actually needed.

• this is the same as previous



example 1, cont. cont. cont. cont.

Solution version 4: Do it more accurately by smaller steps

• the blue slope lines are not really needed . . .



example 1, cont.5

Solution version 5: Smaller steps.

• this is still only approximate



example 1, cont.6

Solution version 6: Smaller. (Make the computer do more work.)

• this looks like a solution not a direction field



Euler’s method

• the idea of following the direction field, in a straight line for a
short distance, and repeating, is Euler’s method

• for the general DE dy
dx = f (x , y), Euler’s method is

yn+1 = yn + h f (xn, yn) (∗)

◦ h ̸= 0 is a step size you must choose
◦ the next x-value is always h away from the last: xn+1 = xn + h
◦ (∗) is a formula to understand and memorize
◦ . . . and put in computer programs

• in the previous slides we had f (x , y) = x − y2, starting values
(x0, y0) = (0, 1), and four values of h: h = 1, 0.5, 0.25, 0.125



a derivation of Euler’s method

easy to derive it from the direction field of dy
dx = f (x , y), as follows:

• suppose we are at a point (xn, yn)

◦ this might be the initial point (x0, y0)

• the slope is m = f (xn, yn) so the line we want is

y − yn = f (xn, yn)(x − xn)

• we want to move to a new location xn+1 = xn + h so
x − xn = h and y = yn+1

• thus
yn+1 − yn = f (xn, yn) h

• i.e. yn+1 = yn + h f (xn, yn)



measuring accuracy

• assume we are solving an ODE IVP: dy
dx = f (x , y), y(x0) = y0

• if we also know the exact solution y(x) then we can measure
(evaluate) the error in the approximation

yn ≈ y(xn)

◦ “yn” is the number produced by Euler’s method
◦ “y(xn)” is the exact solution at the x-value xn

• picture this:



measuring accuracy

• context:

dy

dx
= f (x , y), y(x0) = y0

y(x) = (exact solution, a formula)

yn = (numbers you compute from Euler’s method)

• there are two common ways to report the error:

1 absolute error = |y(xn)− yn|

2 relative error =
|y(xn)− yn|

|y(xn)|



caveat about measuring accuracy

• you can only compute absolute or relative error if the exact
solution is known

• . . . but usually the reason we use a numerical method like
Euler’s is because the exact solution is not known

◦ in real applications we do not know the exact solution

• thus: examples where the absolute or relative error is
computable are automatically “toy examples”



example 2
• Example 2: for the ODE IVP

y ′ = y , y(0) = 1

(a) find the exact solution
(b) use Euler’s method to get an approximation of y(1) which is

accurate to four digits?
◦ try h = 0.1 first, and then h = 0.05?

(c) show in a table: xn, yn, the exact value y(xn), the absolute
error, and the relative error



example 2, cont.

• so one can proceed by hand, but its tedious work . . .

• this is the original purpose for which computers were designed

• I used Matlab code below

◦ posted as simpleeuler.m at the Codes tab on the public site

h = 0.1; % change to e.g. h=0.05

N = 10; % change to e.g. N=20

x = 0;

y = 1;

for n = 1:N+1

exact = exp(x);

[x, y, exact, abs(y-exact), 100*abs(y-exact)/abs(exact)]

y = y + h * y; % this is Euler’s method

x = x + h;

end



example 2, cont. cont.

• the code produces the table below when h = 0.1 and we take
N = 10 steps . . . giving 4.58% relative error at x = 1

xn yn actual value abs. error rel. error

0.00 1.0000 1.0000 0.0000 0.00
0.10 1.1000 1.1052 0.0052 0.47
0.20 1.2100 1.2214 0.0114 0.93
0.30 1.3310 1.3499 0.0189 1.40
0.40 1.4641 1.4918 0.0277 1.86
0.50 1.6105 1.6487 0.0382 2.32
0.60 1.7716 1.8221 0.0506 2.77
0.70 1.9487 2.0138 0.0650 3.23
0.80 2.1436 2.2255 0.0820 3.68
0.90 2.3579 2.4596 0.1017 4.13
1.00 2.5937 2.7183 0.1245 4.58



example 2, cont.3; h = 0.05, N = 20 case

xn yn actual value abs. error rel. error
0.00 1.0000 1.0000 0.0000 0.00
0.05 1.0500 1.0513 0.0013 0.12
0.10 1.1025 1.1052 0.0027 0.24
0.15 1.1576 1.1618 0.0042 0.36
0.20 1.2155 1.2214 0.0059 0.48
0.25 1.2763 1.2840 0.0077 0.60
0.30 1.3401 1.3499 0.0098 0.72
0.35 1.4071 1.4191 0.0120 0.84
0.40 1.4775 1.4918 0.0144 0.96
0.45 1.5513 1.5683 0.0170 1.08
0.50 1.6289 1.6487 0.0198 1.20
0.55 1.7103 1.7333 0.0229 1.32
0.60 1.7959 1.8221 0.0263 1.44
0.65 1.8856 1.9155 0.0299 1.56
0.70 1.9799 2.0138 0.0338 1.68
0.75 2.0789 2.1170 0.0381 1.80
0.80 2.1829 2.2255 0.0427 1.92
0.85 2.2920 2.3396 0.0476 2.04
0.90 2.4066 2.4596 0.0530 2.15
0.95 2.5270 2.5857 0.0588 2.27
1.00 2.6533 2.7183 0.0650 2.39



example 2, cont.4
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• for h = 0.001 and N = 1000 I get 0.05% rel. error:

y1000 = 2.71692 ≈ 2.71828 = y(1)



another derivation of Euler’s method

• start with the DE
dy

dx
= f (x , y)

• remember what a derivative is!:

lim
h→0

y(x + h)− y(x)

h
= f (x , y(x))

• think: y(x) is current value and y(x + h) is next value

• drop the limit and adopt this as a method:

yn+1 − yn
h

= f (xn, yn)

◦ at this point yn and y(xn) mean different things!

• rewrite as Euler’s method before: yn+1 = yn + hf (xn, yn)



are there better methods?

• yes!

• here is a derivation, by picture, of the “explicit midpoint rule”:



are there better methods?

• yes!

• Euler’s method is only first order; it makes errors proportional
to the step size h

• see the Wikipedia page for “midpoint method”

◦ the explicit and implicit midpoint methods are “second order”
◦ they can get the same accuracy in 10 steps that Euler does in

100 steps

• see the Wikipedia page for “Runge-Kutta methods”

◦ the original RK method is “fourth order” so it can get the
same accuracy in 10 steps that Euler does in 10000 steps

◦ we will return to this in Chapter 9

https://en.wikipedia.org/wiki/Midpoint_method
https://en.wikipedia.org/wiki/Runge-Kutta_methods


example 3
• Example 3: consider the ODE IVP

dT

dt
= −0.3 (T − Tm(t)) , T (0) = 140

where Tm(t) = 75−
(
60

π

)(π
2
+ arctan(10(t − 5))

)
• what situation does this model?



example 3: Newton’s law of cooling

• consider: ODE IVP
dT

dt
= −0.3 (T − Tm(t)), T (0) = 140, where

Tm(t) is a step down from 75 to 15 at t = 5

• approximate solution using Euler’s method on t ∈ [0, 10]:

Tn+1 = Tn + h [−0.3 (T − Tm(tn))]

• try N = 50 steps of length h = 10/50 = 0.2 minutes?



expectations

• to learn this material, just listening to a lecture is not enough!

• also:

◦ read section 2.6 in the textbook
◦ try out the Euler’s method codes at the Codes tab
◦ do Homework 2.6

https://bueler.github.io/math302/codes.html

