2.4 Exact Equations a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

three objects from calculus III

to get started on exact equations we recall these ideas:
(1) vector fields:

$$
\overrightarrow{\mathbf{F}}=a(x, y) \hat{\mathbf{\imath}}+b(x, y) \hat{\mathbf{\jmath}}
$$

- like a slope field
- ... but with orientation and magnitude
(2) the gradient of a function $f(x, y)$:

$$
\nabla f(x, y)=\frac{\partial f}{\partial x} \hat{\mathbf{i}}+\frac{\partial f}{\partial y} \hat{\mathbf{j}}
$$

- the gradient is a vector field
- the gradient points uphill on the surface $z=f(x, y)$
(3) the differential of f contains the same information as the gradient: $d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$

a major idea

- some vector fields are gradients and some are not:
- Example which is a gradient:

$$
\overrightarrow{\mathbf{F}}=\cos (x+y) \hat{\mathbf{\imath}}+(y+\cos (x+y)) \hat{\mathbf{\jmath}}
$$

supply an f :

- Example which is not a gradient:

$$
\overrightarrow{\mathbf{F}}=\cos (x+y) \hat{\mathbf{\imath}}+(x+\cos (x+y)) \hat{\mathbf{\jmath}}
$$

explain why:

- same idea: some forms

$$
M(x, y) d x+N(x, y) d y
$$

are the differentials of an f-they're exact-and some are not

- these ideas are not obvious!

recall differentials

- differentials were introduced in calculus I as a style for linearizations: $d f=f^{\prime}(x) d x$
- now we need differentials for functions of 2 variables:

$$
f=f(x, y) \quad \Longrightarrow \quad d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

- see calculus III
- differential of $f(x, y)$ describes the tangent plane to the surface $z=f(x, y)$
- the differential contains the same information as the gradient
- note: you need to be able to compute partial derivatives!
- Example: find the differential of $f(x, y)=\frac{1}{2} y^{2}+\sin (x+y)$

how this relates to DEs

- definition: a differential form

$$
M(x, y) d x+N(x, y) d y
$$

is exact if there is $f(x, y)$ so that the form is a differential:

$$
M=\frac{\partial f}{\partial x}, \quad N=\frac{\partial f}{\partial y}
$$

- main idea: if we can rewrite an ODE as an exact differential form then we can solve the ODE

example 1

- this example uses a "miracle" at one step (... not sustainable!)
- Example 1: solve

$$
y^{\prime}=\frac{2 y}{3 y-2 x}
$$

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO,"

how to tell if it is exact

- two concerns with above "method":
(1) the differential form has to be exact! how do you tell?
(2) I guessed $f(x, y)$; this is bad-needed miracle
- the following theorem addresses concern 1 :

Theorem
The differential form $M(x, y) d x+N(x, y) d y$ is exact if and only if

$$
\frac{\partial M}{\partial y} \stackrel{*}{=} \frac{\partial N}{\partial x}
$$

- must be true on simply-connected domain like a rectangle
- proof of one direction: if $M d x+N d y$ is exact then [fill in]
- Example 2: try to use the method of Example 1 to solve

$$
y^{\prime}=\frac{2 y}{3 y-x^{2}}
$$

- not every ODE is solvable by the "exact" method in §2.4
- there is easy test for whether this method will work

example 3

- Example 3: is the equation exact? if so, solve it:

$$
\left(2 x y^{2}-3\right) d x+\left(2 x^{2} y+4\right) d y=0
$$

example 4

- solve the given initial value problem:

$$
\left(e^{x}+y\right) d x+\left(2+x+y e^{y}\right) d y=0, \quad y(0)=1
$$

example 4, cont.

straight from the book

- last two examples are from the book
- example 3 was \#5 in §2.4
- example 4 was \#22 in §2.4
- expect problems like these on Quizzes and Exam!
- the next example is \#46 in $\S 2.4$
- it is too much computation for a Quiz or Exam

example 5

- Example 5: the differential equation

$$
\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} d x+\left(1+\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right) d y=0
$$

describes a family of curves which are the "streamlines" of an idealized fluid flowing around a circular cylinder
(a) solve the differential equation

- get a general, but implicit, solution
(b) there is one value of c giving an explicit solution; find it
(c) plot solution curves for $c=0, \pm 0.2, \pm 0.4, \pm 0.6, \pm 0.8$ using a contour plotting tool

example 5, cont.

(a) solve the differential equation ... as exact, naturally

example 5, cont. ${ }^{3}$

(b) for what value of c can one find an explicit solution?

example 5, finished

(c) contour plot ... here is Matlab code:

```
f = @(x,y) y.*(1.0 - 1.0./(x.^2+y.^2))
x = -3:.1:3; [xx,yy] = meshgrid(x,x);
c = -0.8:0.2:0.8;
h = contour(xx,yy,f(xx,yy),c,'k');
clabel(h)
axis equal
% define function
% grid of points
% contours we want
% black contours
% ... with labels
\% looks better
```


expectations

to learn this material, just listening to a lecture is not enough

- please read section 2.4 in the textbook
- please do the Homework for section 2.4
- search "exact ODEs" at YouTube to see more examples
the biggest issue in $\S 2.4$ for most students: partial derivative and integral skills are rusty
- work on fixing this now!
- actually read the relevant parts of a calculus book, starting with material on: (i) partial derivatives, (ii) vector fields, (iii) gradients, (iv) differentials
- find a calculus III student and explain these topics to them

