# 2.3 Linear Equations a lecture for MATH F302 Differential Equations 

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

## linear first-order differential equations

a linear ordinary differential equation has only a first power on both $d y / d x$ and $y$, and it can be put in the form

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

or

$$
\frac{d y}{d x}+P(x) y=g(x)
$$

we can write solutions to such equations in terms of integrals!

## examples

linear equation standard form: $\quad \frac{d y}{d x}+P(x) y=g(x)$ examples:

$$
\frac{d y}{d x}+y=x+3
$$

Here $P(x)=1$ and $g(x)=x+3$.

$$
t z^{\prime}=z+\cos t
$$

which is the same as

$$
\frac{d z}{d t}+\frac{-1}{t} z=\frac{\cos t}{t}
$$

with $P(t)=-1 / t$ and $g(t)=\cos t / t$.

## not an example

linear equation standard form: $\quad \frac{d y}{d x}+P(x) y=g(x)$
not an example:

$$
y \frac{d y}{d x}=x+e^{x}
$$

this cannot be put in the standard form ... but it is separable (section 2.2)

## example 1

before giving general formulas, here's how the method works on an example

- Example.

$$
\frac{d y}{d x}+y=x+3
$$

## solution principle

to solve a first-order, linear ordinary differential equation $y^{\prime}+P(x) y=g(x)$ we
multiply by a factor which allows us to undo the product rule

## recipe

for DE: $\quad y^{\prime}+P(x) y=g(x)$
(1) find $\mu(x)$ so that $\mu^{\prime}(x)=P(x) \mu(x)$
(2) multiply both sides of DE by $\mu$ :

$$
\mu y^{\prime}+\mu P y=\mu g
$$

(3) recognize product rule:

$$
\begin{aligned}
\mu y^{\prime}+\mu^{\prime} y & =\mu g \\
(\mu y)^{\prime} & =\mu g
\end{aligned}
$$

(4) integrate:

$$
\mu(x) y(x)=\int \mu(x) g(x) d x
$$

(5) solve for $y$ :

$$
y(x)=\mu(x)^{-1} \int \mu(x) g(x) d x
$$

## integrating factor

formula: the integrating factor $\mu(x)$, which solves

$$
\mu^{\prime}(x)=P(x) \mu(x)
$$

has formula

$$
\mu(x)=e^{\int P(x) d x}
$$

## example 2

example: (has an initial condition)

$$
\frac{d y}{d x}+y=x+3, \quad y(0)=3
$$

## visualization (example 2)

example:

$$
\frac{d y}{d x}+y=x+3, \quad y(0)=3
$$



## example 3: Newton's law of cooling

example:

$$
\frac{d T}{d t}=k\left(T_{m}-T\right), \quad T(0)=T_{0}
$$

where $k, T_{m}, T_{0}$ are constants


## example 3: Newton's law of cooling

example:

$$
\frac{d T}{d t}=k\left(T_{m}-T\right), \quad T(0)=T_{0}
$$

## example 4: decaying response to pulses

example: suppose we have a system with solution $s(t)$ which responds to an input $f(t)$ :

$$
\dot{s}=-k s+f(t), \quad s(0)=0
$$

suppose the input $f(t)$ is a sequence of pulses as in this graph:

## example 4: decaying response to pulses

example:

$$
\dot{s}=-k s+f(t), \quad s(0)=0
$$

## example 4: decaying response to pulses

example:

$$
\dot{s}=-k s+f(t), \quad s(0)=0
$$

solution:

$$
\begin{aligned}
s(t) & =e^{-k t} \int_{0}^{t} e^{k \tau} f(\tau) d \tau \\
& =\int_{0}^{t} e^{-k(t-\tau)} f(\tau) d \tau
\end{aligned}
$$

interpret this?

## example 5: careful (cute) algebra

example:

$$
x^{2} y^{\prime}+x(x+2) y=e^{x}
$$

## standard expectations

to learn this material, just listening to a lecture is not enough

- please read section 2.3 in the textbook
- please do the Homework for section 2.3
- search "linear ODEs" at YouTube to see more examples

