2.2 Separable Equations a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

regarding chapters 1 and 2

- the purpose of textbook chapter 1 is to sketch the language and meaning of differential equations
- the purpose of chapter 2 is to actually solve some differential equations by hand
- section 2.2 is the first example: separable equations
- warning: by-hand methods can be difficult or impossible on a given differential equation
- however, the examples where we know how to solve are often important in practice

separable differential equations

Definition
a separable differential equation can be put in the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

- Example.

$$
\frac{d y}{d x}=\frac{y \cos (x)}{1+y^{2}}
$$

- Not an example.

$$
\frac{d y}{d x}=\cos (x)+y
$$

- Also not an example.

$$
\frac{d y}{d x}=\sin \left(x+y^{2}\right)
$$

emphasis on can

Definition
a separable differential equation can be put in the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

- Example.

$$
p(y) \frac{d y}{d x}=g(x)
$$

emphasis on can

Definition

a separable differential equation can be put in the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

- Example.

$$
p(y) \frac{d y}{d x}=g(x)
$$

define $h(y)=1 / p(y)$ to make into standard separable form

how to solve separable equations?

- move y stuff to left and x to right:

$$
\begin{aligned}
& \frac{d y}{d x}=g(x) h(y) \\
& \frac{1}{h(y)} \frac{d y}{d x}=g(x) \\
& \frac{1}{h(y)} d y=g(x) d x
\end{aligned}
$$

how to solve separable equations?

- move y stuff to left and x to right:

$$
\begin{aligned}
& \frac{d y}{d x}=g(x) h(y) \\
& \frac{1}{h(y)} \frac{d y}{d x}=g(x) \\
& \frac{1}{h(y)} d y=g(x) d x
\end{aligned}
$$

- integrate both sides:

$$
\int \frac{1}{h(y)} d y=\int g(x) d x
$$

how to solve separable equations?

- alternative appearance with $p(y)=1 / h(y)$:

$$
p(y) \frac{d y}{d x}=g(x)
$$

how to solve separable equations?

- alternative appearance with $p(y)=1 / h(y)$:

$$
p(y) \frac{d y}{d x}=g(x)
$$

- move y stuff to left and x to right:

$$
p(y) d y=g(x) d x
$$

- integrate both sides:

$$
\int p(y) d y=\int g(x) d x
$$

why does it work?

- the method works because of the chain rule
- the integrals you are really doing are both with respect to x :

$$
\int p(y(x)) \frac{d y}{d x} d x=\int g(x) d x
$$

how do you finish up?

- once you do the integrals

$$
\int p(y) d y=\int g(x) d x
$$

then solve for y, if possible, to get an explicit solution

- if you cannot solve for y then the solution remains implicit
- example: find $y(x)$ if

$$
\frac{d y}{d x}=x y^{2}
$$

example 2

- some familiar equations are also separable
- example: find $y(x)$ if

$$
\frac{d y}{d x}=-5 y
$$

example 3

- what if there are initial conditions?
- example: find $z(t)$ if $z(4)=1$ and $z^{\prime}=\frac{e^{-z}}{t}$

example 4

- you may end up only knowing the solution implicitly
- example: find $y(x)$ if $\frac{d y}{d x}=\frac{x(1-x)}{y(2+y)}$

example 5

- integration techniques are required, and
- division is dangerous!
- example: find all solutions $y(x)$ if $\frac{d y}{d x}=y^{2}-9$

standard expectations

to learn this material, just listening to a lecture is not enough

- please read section 2.2 in the textbook
- please do the Homework for section 2.2
- search "separable ODEs" at YouTube to see more examples

