2.1 Solution Curves (direction fields and phase portraits) a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

meaning of a differential equation

- let us start over on the meaning of a differential equation (DE)
- for the DE

$$
\frac{d y}{d x}=f(x, y)
$$

(1) the left side is the slope of the solution $y(x)$
(2) given a point (x, y), the right side computes a number $f(x, y)$

- thus a first-order DE says:
the slope of the equals a known function of

solution $y(x)$$\quad$| the location (x, y) |
| :--- |

picturing a DE

- the first-order DE $\frac{d y}{d x}=f(x, y)$ says:

$$
\begin{array}{lll}
\text { the slope of the } & \text { equals } & \begin{array}{l}
\text { a known function of } \\
\text { solution } y(x)
\end{array} \\
\text { the location }(x, y)
\end{array}
$$

- this means that
we can draw a picture of the DE itself
by drawing the slope $m=\frac{d y}{d x}$ at each point (x, y)
- we can do this whether or not we can do the calculus/algebra to find a solution formula $y(x)$

direction field

- from the first-order DE $\frac{d y}{d x}=f(x, y)$ we can create a direction field or slope field:
(1) generate a grid of point in the x, y plane
(2) for each point, draw a short line segment with the slope given by $f(x, y)$ at that point
- Example. By hand, draw a direction field:

$$
\frac{d y}{d x}=x-y
$$

on the square
$-3 \leq x \leq 3$,
$-3 \leq y \leq 3$

computers are useful

- I happily acknowledge that this is a job for a computer!
- see the Codes tab at the public site
- I will use a Python function dirfield()
- Example. Use a computer to draw a direction field for $\frac{d y}{d x}=x-y$ on the square $-3 \leq x \leq 3,-3 \leq y \leq 3$

Solution:


```
def f(x,y): return x - y
dirfield(f, [-3,3,-3,3],mx=12,my=12)
```


picturing IVPs

- recall that we are often solving initial value problems (IVPs)
- next main idea: one can see the solution to an ODE IVP by plotting the initial point in the plane and then following the direction field from that point
- Example. Use the direction field for $\frac{d y}{d x}=x-y$ to sketch the solution $y(x)$ of $\frac{d y}{d x}=x-y, y(0)=2$
- soon: methods in §2.3 will give a formula for $y(x)$

exercise 9 in §2.1

9. Use computer software to obtain a direction field for the given differential equation. By hand, sketch an approximate solution curve passing through each of the given points.

$$
\frac{d y}{d x}=0.2 x^{2}+y
$$

(a) $y(0)=\frac{1}{2}$
(b) $y(2)=-1$

def $f(x, y)$: return $0.2 * x * * 2+y$
dirfield(f, $[-2,5,-3,3], m x=12, m y=12$)

two topics in §2.1

- there are two equally-important topics in §2.1:
- direction fields for 1st-order DEs
- autonomous 1st-order DEs, and their phase portraits
- both topics are about picturing DEs
- next: "autonomous" describes a special case where we can draw a simpler picture

autonomous first-order DEs

- definition. a first-order differential equation is autonomous if the function does not depend on the independent variable:

$$
\frac{d y}{d x}=f(y)
$$

- "autonomous" means "independent of control"
- ... above DE is not directly controlled by input variable x
- note that the solution $y(x)$ is still a function of x
- a big idea: fundamental laws of nature, in which the independent variable is the time t, are autonomous DEs

autonomous first-order DEs

- definition. a first-order differential equation is autonomous if the function does not depend on the independent variable:

$$
\frac{d y}{d x}=f(y)
$$

- Example.

$$
\frac{d y}{d x}=\sqrt{\sin (y)} \text { is autonomous }
$$

- Example.

$$
\frac{d y}{d x}=x-y \quad \text { is not autonomous }
$$

classification of first-order DEs

- we will see that "autonomous" also means "easier to visualize," but not necessarily easier to solve
- using definitions from sections 1.1 and 2.1 we already have a classification of first-order DEs:

	autonomous	nonautonomous
linear	$y^{\prime}+c y=d$	$y^{\prime}+P(x) y=g(x)$
nonlinear	$y^{\prime}=f(y)$	$y^{\prime}=f(x, y)$

- all of these can be written as $y^{\prime}=f(x, y)$, right?

picturing autonomous DEs

- the direction field of an autonomous DE has redundancies
- since $f(y)$ only depends on y, the slope is the same for all x values
- Example. Consider

$$
\frac{d y}{d x}=\cos (2 y)
$$

Use a computer to draw the direction field for $x \in$ $[-3,3]$ and $y \in[-\pi, \pi]$. Then draw the phase portrait.

- the one-dimensional phase portrait is a simplified form of the direction field
- a.k.a. phase line

critical points of autonomous DEs

- consider an autonomous first-order DE: $\frac{d y}{d x}=f(y)$
- a value $y=c$ is called a critical point if $f(c)=0$
- a.k.a. equilibrium point or stationary point
- if $y=c$ is a critical point then $y(x)=c$ is a solution!
- Example. $y=\frac{\pi}{4}$ is a critical point and a solution of

$$
\frac{d y}{d x}=\cos (2 y)
$$

phase portrait example

- Example. By hand, sketch the phase portrait of

$$
\frac{d z}{d t}=z^{2}+z^{3}
$$

and show all critical points. Then sketch the graph of solutions to the ODE IVP with the following initial values.
(a) $z(0)=1$
(b) $z(0)=-1 / 2$
(c) $z(0)=-1$
(c) $z(0)=-2$

to draw a phase portrait of an autonomous equation

for:

$$
\frac{d y}{d x}=f(y)
$$

summary:

- draw the y-axis vertically
- solve $f(y)=0$ for the critical points, and mark them
- between critical points, evaluate the sign of $f(y)$
- draw an up or down arrow accordingly
easy!

classifying critical points

- a critical point $y=c$ of an autonomous differential equation $\frac{d y}{d x}=f(y)$ is
- attracting or asymptotically stable if

$$
\begin{equation*}
\lim _{x \rightarrow \infty} y(x)=c \tag{*}
\end{equation*}
$$

for all initial points $\left(x_{0}, y_{0}\right)$ where y_{0} is close to c,

- semi-stable if $(*)$ only happens for y_{0} on one side of c, and
- repelling or asymptotically unstable otherwise

example 2

- Example. Find and classify the critical points of

$$
\frac{d y}{d x}=\cos (2 y)
$$

example 3

- Example. Find and classify the critical points of

$$
\frac{d z}{d t}=z^{2}+z^{3}
$$

27. Find the critical points and phase portrait. Classify each critical point as asymptotically stable, unstable, or semi-stable. By hand, sketch typical solution curves in the regions in the $x y$ plane determined by the graphs of the equilibrium solutions.

$$
\frac{d y}{d x}=y \ln (y+2)
$$

40. The autonomous differential equation

$$
m \frac{d v}{d t}=m g-k v,
$$

where k is a positive constant and g is the acceleration due to gravity, is a model for the velocity v of a body of mass m that is falling under gravity. The term - kv, which is air resistance, implies that the velocity will not increase without bound as t increases. Use a phase portrait to find the limiting, or terminal velocity of the body.

looking ahead: next two sections 2.2, 2.3

- the first four sections of the textbook (1.1, 1.2, 1.3, 2.1) are about the meaning of differential equations
- such meaning is the important take-home message from a course in differential equations!
- but for the next few sections we will address how to find formulas for solutions $y(x)$
- looking ahead to the next two sections:

	autonomous	nonautonomous	
linear	$y^{\prime}+c y=d 2.2,2.3$	$y^{\prime}+P(x) y=g(x) 2.3$	
nonlinear	$y^{\prime}=f(y) 2.2$	separable	
		nonseparable	
$y^{\prime}=g(x) h(y) 2.2$	$y^{\prime}=f(x, y)$		

programming ... this is not a CS class

- you don't have to know programming to do this class
- ... but interacting with a computer is obligatory for some homework!
- for such homework problems you must either embrace some coding or seek-out tools such as desmos or Wolfram alpha which allow you to do particular computer jobs like generating direction fields
- I will generally show a few lines of Matlab or Python when there is a computer-suitable job
- ... and I'll link to some programming-free tools

standard expectations

expectations: to learn this material, just listening to a lecture is not enough

- please read section 2.1 in the textbook
- note there is a large new vocabulary in this section, namely the language of qualitative differential equations
- I did not cover "translation property" on page 43; read that!
- please do the Homework for section 2.1
- the visualization jobs in section 2.1 are a topic for which youtube videos etc. can be excellent resources

