1.3 Differential Equations as Mathematical Models

a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

DEs as models

- I have already made a big deal of differential equations as models in previous slides ...
- the goal of each example and exercise in $\S 1.3$ is to write down a differential equation as a model of some situation
- often don't need to solve the DE
- generally first-order DE
- for section §1.3 my plan is:
- I will work-through 4 exercises from the section here
- you will actually read the examples in the section
- on Homework 1.3 you will do some exercises from the section

exercise 2 in $\S 1.3$

2. The population model given in (1) fails to take death into consideration: the growth rate equals the birth rate. In another model of a changing population of a community it is assumed that the rate at which the population changes is a net rate-that is, the difference between the rate of births and the rate of deaths in the community. Determine a model for the population $P(t)$ if both the birth rate and the death rate are proportional to the population present at time $t>0$.

- the population model in (1) is simply that the rate of change of population is proportional to the population:

$$
\frac{d P}{d t}=k P
$$

exercise 2 cont.

2. The population model given in (1) fails to take death into consideration: the growth rate equals the birth rate. In another model of a changing population of a community it is assumed that the rate at which the population changes is a net rate-that is, the difference between the rate of births and the rate of deaths in the community. Determine a model for the population $P(t)$ if both the birth rate and the death rate are proportional to the population present at time $t>0$.

- this exercise asks for "another model" where "both the birth rate and death rate are proportional" to $P(t)$
- $P(t)=$ "the population present at time $t>0$ "
- in the new model we want $\frac{d P}{d t}$ to be the net rate
- the net rate is "the difference between the rate of births and the rate of deaths"

exercise 2 cont.

- the rate at which the population changes is net rate:

$$
\frac{d P}{d t}=(\text { rate of births })-(\text { rate of deaths })
$$

- both the birth rate and death rate are proportional to $P(t)$:

$$
\begin{aligned}
(\text { rate of births }) & =k_{b} P \\
(\text { rate of deaths }) & =k_{d} P
\end{aligned}
$$

where k_{b}, k_{d} are two new positive constants

exercise 2 cont. cont.

- the new model combines the stuff on last slide:

$$
\frac{d P}{d t}=k_{b} P-k_{d} P
$$

- show this new model is really the old model (1):
- conclusion. we see that (1) already allows births and deaths, with $k=k_{b}-k_{d}$
- please go back and actually read the "Population Dynamics" example on page 23

exercise 5 in $\S 1.3$

5. A cup of coffee cools according to Newton's law of cooling. Use data from the graph of temperature $T(t)$ [below] to estimate the constants T_{m}, T_{0}, and k in a model of the form of a first order initial-value problem: $d T / d t=k\left(T-T_{m}\right), T(0)=T_{0}$.

- Newton's law of cooling says that an object with temperature $T(t)$ warms or cools at a rate proportional to the difference between $T(t)$ and the ambient temperature T_{m} :

$$
\frac{d T}{d t}=k\left(T-T_{m}\right)
$$

- solve by extracting numbers from the graph:

exercise 21 in $\S 1.3$

21. A small single-stage rocket is launched vertically as shown. Once launched, the rocket consumes its fuel, and so its total mass $m(t)$ varies with time $t>0$. If it is assumed that the positive direction is upward, air resistance is proportional to the instantaneous velocity v of the rocket, and R is the upward thrust or force, then construct a mathematical model for the velocity $v(t)$ of the rocket.

- hint 1: when the mass is changing with time, Newton's law is

$$
\begin{equation*}
F=\frac{d}{d t}(m v) \tag{17}
\end{equation*}
$$

where F is the net force on the body and $m v$ is the momentum

- hint 2: on page 27 there is a model for air resistance used in equation (14): $F_{2}=-k v$

exercise 21, cont.

- collect the forces to get the net force:

$$
F=
$$

- now we can write down the model:

exercise 10 in $\S 1.3$

10. Suppose that a large mixing tank initially holds 300 gallons of water in which 50 pounds of salt have been dissolved. Another brine solution is pumped into the tank at a rate of 3 gallons per minute [gal/min], and when the solution is well-stirred it is then pumped out at a slower rate of $2 \mathrm{gal} / \mathrm{min}$. If the concentration of the solution entering is 2 pounds per gallon [lb/gal], determine a differential equation for the amount of salt $A(t)$ in the tank at time $t>0$.

- $A(t)$ is amount of salt in pounds [lb]; what is $A(0)$?
- what is $V(t)$, the total solution volume?
- write down the differential equation for $\frac{d A}{d t}$:

exercise 10, extended and fully-solved

- what is a function $A(t)$ satisfying the ODE IVP?:

$$
\frac{d A}{d t}=6-\frac{2}{300+t} A, \quad A(0)=50
$$

- one may verify that

$$
A(t)=2(300+t)-550\left(\frac{300}{300+t}\right)^{2}
$$

- get it using methods in §2.3

standard expectations

expectations: to learn this material, just listening to a lecture is not enough

- please read section 1.3 in the textbook
- for instance, actually read the "Mixtures" example on p. 25 and the "Falling Bodies and Air Resistance" example on p. 27
- please do the Homework for section 1.3

