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main purpose of DEs

• the main purpose of differential equations (DEs) in science
and engineering:

DEs can make predictions

• two things are needed to make a prediction:

precise description
of rate of change

= differential equation

knowledge
of current state

= initial conditions

• sections 1.1 and 1.2 introduce these two things



prediction models

• professionals are skeptics about using math for predictions,
and DEs do not “know the future”, but they are models which
are capable of prediction

• next two slides are examples

don’t worry about understanding the specific equations on
the next two slides



an amazingly-accurate
prediction model

• Newton’s theory of gravitation
gives remarkably-accurate
predictions of planets, satellites,
and space probes

• the DEs at right are Newton’s
model of many particles
interacting by gravity

• . . . a system of coupled,
nonlinear, 2nd-order ODEs for
the position ri of each object
with mass mi

d2ri
dt2

= G
∑
j ̸=i

mimj

|rj − ri |3
(rj−ri )

en.wikipedia.org/wiki/Equations of motion

https://en.wikipedia.org/wiki/Equations_of_motion


a pretty-good
prediction model

• weather prediction uses
Euler’s fluid model of the
atmosphere

• . . . a system of PDEs;
equations at right

• predictions have been refined
by comparing prediction to
what actually happened

• modern: about 6 days of
good/helpful predictions

en.wikipedia.org/wiki/

Euler equations (fluid dynamics)

don’t worry: this course is about ODEs and not systems
of PDEs

https://en.wikipedia.org/wiki/Euler_equations_(fluid_dynamics)
https://en.wikipedia.org/wiki/Euler_equations_(fluid_dynamics)


what kind of student are you?

• did you ignore the last few slides because all you want to
know is how to do the homework problems quicker?

• I observe that

◦ better students choose to be curious and interested
◦ better students have at least some tentative trust that

teachers are providing an ultimately easier and clearer path



example 1

• example: here is the single most important ODE:

y ′ = y
◦ it is first-order and linear

• just by thinking one can write down all of its solutions:

y(x) =

• graph and label several particular solutions:

x

y



example 1, cont.

• initial conditions “pick out” one prediction (solution) from all
the solutions of a differential equation

• for example, fill in the table:
ODE IVP solution

y ′ = y , y(0) = 3 y(x) =

y ′ = y , y(3) = −1 y(x) =

y ′ = y , y(−1) = 1 y(x) =

• graph them:

x

y



example 2

• as we will show later,

y(x) = c1 sin(3x) + c2 cos(3x)

describes all the solutions of

y ′′ + 9y = 0

• example. solve this 2nd-order linear ODE IVP:

y ′′ + 9y = 0, y(0) = 2, y ′(0) = −1



example 3

• example. now solve this 2nd-order linear ODE IVP:

y ′′ + 9y = 0, y(2) = −3, y ′(2) = 0



example 4

• example. now solve this problem:

y ′′ + 9y = 0, y(0) = 0, y(1) = 3

• the above has boundary conditions at x = 0 and x = 1

◦ not an IVP
◦ potentially problematic; for example,

y ′′ + 9y = 0, y(0) = 0, y(π/3) = 3 has no solutions



general IVP

• in Math 302 we will stick to initial conditions

◦ not boundary conditions

• the general form of an initial-value problem for an ordinary
differential equation (ODE IVP):

dny

dxn
= f (x , y , y ′, . . . , y (n−1))

y(x0) = y0

y ′(x0) = y1
...

y (n−1)(x0) = yn−1

◦ this is equation (1) at the start of section 1.2



main idea

• as suggested earlier, the main idea is that an ODE IVP is a
model capable of prediction

◦ law of how things change (= the DE) plus the current state
(= the initial values)

• to make a prediction, two questions need “yes” answers:

1 does a solution of the ODE IVP exist?
2 is there only one solution of ODE IVP?

• people often say “is the solution unique?” for the second
question



theorem about main idea

• for nicely-behaved first-order ODE IVPs, the answer to both
questions is “yes”!

◦ “nicely-behaved” means that the differential equation is
continuous enough

• consider the first-order ODE IVP

(∗) y ′ = f (x , y), y(x0) = y0

Theorem (1.2.1)

Let R be a rectangle in the xy plane that contains (x0, y0) in the
interior. Suppose that f (x , y) in (∗) is continuous and the ∂f

∂y (x , y)
is also continous. Then there is exactly one solution to ODE IVP,
but it may only be defined for a short part of the x-axis around x0,
i.e. on an open interval (x0 − h, x0 + h).



an example

• the last slide was “mathy”; an example helps give meaning

• example. verify that both y(x) = 0 and y(x) = cx3/2, for
some nonzero c , solve the ODE IVP

y ′ = y1/3, y(0) = 0

• in the above example ∂f
∂y = 1

3y
−2/3

◦ it is not continuous on any rectangle around (0, 0)

• as in the theorem on the last slide, this example shows you
need f (x , y) to be a bit “nice” to make a single prediction



conclusion

• the main idea of section 1.2 is in this slogan:

if you add initial condition(s) to a differential equation then
you can get a single solution

• Theorem 1.2.1 says this is actually true of first-order ODE
IVPs (y ′ = f (x , y)) with a single initial value (y(x0) = y0) as
long as the function f is nice

• important notes:

◦ to use the language of prediction, we would call x < x0 the
“past” and x > x0 the “future”

◦ for nth-order ODEs (second-order, third-order, etc.) the
Theorem does not directly apply, but we expect to need n
numbers to give adequate initial conditions/values



standard expectations

expectations: to learn this material, just listening to a lecture is
not enough

• please read section 1.2 in the textbook

◦ and browse section 1.3

• please do the Homework for section 1.2

• see this Wikipedia page for more on Theorem 1.2.1:
en.wikipedia.org/wiki/Picard-Lindelöf theorem

https://en.wikipedia.org/wiki/Picard-Lindelof_theorem

