1.1 Definitions and Terminology
 a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

basic

- a differential equation is an equation with a derivative somewhere in it

definitions

- idea: a differential equation contains an unknown function which we want to find
- an ordinary differential equation (ODE) uses ordinary derivatives (as in calculus I and II)
- primes $\left(y^{\prime}=d y / d x\right)$ or dots $(\dot{y}=d y / d t)$ are often used to denote ordinary derivatives
- examples of ODEs:

$$
\begin{aligned}
\frac{d y}{d x} & =x+y^{2} & & y(x) \text { is unknown function } \\
y^{\prime} & =x+y^{2} & & \ldots \text { exactly the same } \\
\frac{d^{2} u}{d t^{2}} & =-c u & & u(t) \text { is unknown function } \\
\ddot{u} & =-c u & & \ldots \text { exactly the same }
\end{aligned}
$$

- the unknown function in an ODE depends on one variable

contrast with PDEs

- MATH 302 is about ODEs
- ... but there are also partial differential equations (PDEs)
- subscripts are often used to denote partial derivatives
- examples:

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =c^{2} \frac{\partial^{2} u}{\partial x^{2}} & & u(t, x) \text { is unknown function } \\
u_{t t} & =c^{2} u_{x x} & & \ldots \text { exactly the same PDE } \\
w_{t} & =k\left(w_{x x}+w_{y y}\right) & & w(t, x, y) \text { is unknown function }
\end{aligned}
$$

- the unknown function in a PDE depends on more than one variable
- do not worry about PDEs!
- they are covered in MATH 432
- I am just explaining here why people say "ordinary"

order

- the order of a differential equation is the maximum number of derivatives
- order has nothing to do with powers or exponentials
- most of the differential equations in MATH 302 have order 1 or order 2
- examples:
- $y^{\prime}=x+y^{2}$ has order one
- $\ddot{u}=-c u$ has order two
- c is just a constant in this context
- $y^{3}+\frac{d^{4} y}{d x^{4}}=\left(\frac{d^{2} y}{d x^{2}}+\sin x\right)^{5}$ has order four

two main operations on ODEs

- there is more terminology to come ... but let's do something
- two common operations with differential equations are
- verify that a given function is a solution
- construct a solution ("solve the differential equation")
- example: verify that $y(x)=\sin (3 x)$ solves $y^{\prime \prime}+9 y=0$
- example: construct a solution to $y^{\prime}=y^{2}$

visualization of solutions

- a given differential equation generally has many solutions
- example (a): show that for any value of the parameter A the function $y(x)=A e^{-x^{2} / 2}$ solves $\frac{d y}{d x}=-x y$
- example (b): sketch several particular solutions from (a)

linear

- back to terminology
- a differential equation is linear if it can be written as a sum with only first powers on the unknown function and its derivatives
- examples:
- $3 y^{\prime \prime}-7 y^{\prime}+8 y=\sin x$ is linear because it is in the form

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

- $x \frac{y^{\prime}}{y}=x^{2}+5$ is linear because it it can be written in the form

$$
\begin{array}{r}
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \\
\left(\text { set: } a_{1}(x)=x, a_{0}(x)=-x^{2}-5, g(x)=0\right)
\end{array}
$$

nonlinear

- linear differential equations are special and easier
- nature has been generous by allowing good models of surprisingly-many situations to be built using linear differential equations
- most differential equations are nonlinear which only means they are not linear
- examples:
- $y^{\prime}=y^{2}$ is nonlinear
- $y^{\prime \prime}+\sin y=0$ is nonlinear
- one way to understand MATH 302:
- we will be able to solve some nonlinear ODEs
- we will be systematic about solving linear ODEs

implicit solution

- first, remember implicit differentiation
- example: find $d y / d x$ if $x \sin y+y^{2}=\ln x$
- the statement "verify [this implicitly-defined function] is a solution of [this differential equation]" asks for implicit differentiation
- example: verify $y=e^{x y}$ defines a solution of $(1-x y) y^{\prime}=y^{2}$

extras

the book mentions more terminology; none of this is terribly important, but it is used in the rest of the semester:
page 5 normal form means the highest derivative is on the left; the normal form of $y^{\prime}-y^{2}=0$ is $y^{\prime}=y^{2}$, and the normal form of $u^{\prime \prime}+9 u=e^{t}$ is $u^{\prime \prime}=e^{t}-9 u$
page 7 a function $y(x)$ can be discontinuous but when the book uses the term solution for $y(x)$ then it solves a differential equation and we assume it is continuous on some interval
page 11 a function like $F(x)=\int_{a}^{x} g(t) d t$ is an integral-defined function; the most important thing to know is that the derivative is easy: $F^{\prime}(x)=g(x)$

- see Wed. 30 August worksheet

standard expectations

expectations: to learn this material, just listening to a lecture is not enough

- please read section 1.1 in the textbook
- and browse section 1.2
- please do the Homework for section 1.1
- please look around the bueler.github.io/math302 website
- please find other videos and related content!

