Name:

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work; use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [5 points] Find the radius and interval of convergence of the power series $\sum_{k=1}^{\infty} \frac{(3 x-1)^{k}}{k}$

$$
R=
$$

$$
I=
$$

2. [4 points] What is the (minimum) radius of convergence of the power series solution of the following differential equation, about the ordinary point $x_{0}=0$? Explain briefly.
(Hint. Do not find the series solution itself!)
$\left(x^{2}-25\right) y^{\prime \prime}+y^{\prime}+x y=0$
3. [8 points] Verify by direct substitution that the given power series is a solution of the differential equation.
$y=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} x^{n}}{n!}, \quad y^{\prime}+2 y=0$
4. [8 points] Solve the initial value problem below by starting with a power series

$$
y(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

(Hints. You can use summation notation or not. Find at least the first five coefficients. You can check your answer by non-series methods, but full credit requires a valid series calculation.)

$$
y^{\prime \prime}+4 y=0, \quad y(0)=3, \quad y^{\prime}(0)=0
$$

Extra Credit. [2 points] The energy function associated to a conservative physical system is $E\left(x, x^{\prime}\right)=\frac{m}{2}\left(x^{\prime}\right)^{2}+P(x)$ where $P(x)$ is the potential energy. The negative derivative of the potential energy is the force: $P^{\prime}(x)=-F(x)$. What is the energy for the undamped, nonlinear mass-spring system with equation $m x^{\prime \prime}=-\frac{k x}{1+x^{2}}$? (Assume m, k are positive constants.)

$$
E\left(x, x^{\prime}\right)=
$$

Maclaurin Series	Interval of Convergence
$e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$	$(-\infty, \infty)$
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}$	$(-\infty, \infty)$
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}$	$(-\infty, \infty)$
$\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}$	$[-1,1] \quad(2)$
$\cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty} \frac{1}{(2 n)!} x^{2 n}$	$(-\infty, \infty)$
$\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n+1}$	$(-\infty, \infty)$
$\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}$	$(-1,1]$
$\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}$	$(-1,1)$

